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Overview

Before: Choice theory. Individual choice, one DM.
Now: Game theory. Multiple agents.

Penalty kicker shoots left or right; model their behaviour as maximising prob. of
scoring a goal.

Goal-keeper goes left or right; model their behaviour as maximising prob.
preventing a goal from being scored.

Whether goal is scored or not depends on both their actions.
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Overview

Before: Choice theory. Individual choice, one DM.
Now: Game theory. Multiple agents.

Penalty kicker shoots left or right; model their behaviour as maximising prob. of
scoring a goal.

Goal-keeper goes left or right; model their behaviour as maximising prob.
preventing a goal from being scored.

Whether goal is scored or not depends on both their actions.
Goal: understand mechanisms, rationalise behaviour, make predictions.
What if the kicker is better with the left foot?

Would the goalkeeper have done their research on the opponent?
Is it a high stakes game?

How does it depend on experience? What if the wind/sun/etc. is going in a
particular way?
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Overview

Applications abound:

- Investment decisions: buy/not buy stock; value of stock depends on others’
decisions; speculative attacks.

- Politics: designing voting rules and the agenda.

- Firm competition and industrial organisation: pricing strategies by firms are
analysed by game theoretic models to determine collusion.

- Auction theory (branch of game theory): spectrum auctions.
- Public economics: procurement policies.
- Evolutionary game theory: cancer treatment research.

- School choice: students choose strategically; other students’ choices affect their
outcome.

- Organisational economics: delegation of decision power within a firm or
organisation.

- Education economics: outcomes and degree of competition in grading schemes.
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Overview

2. Normal-Form Games



Normal-Form Games

A normal-form game is a tuple I' = (/, S, u) where

Set of Players: i € /.

Strategy Space: s; € S;

Strategy profile: s € S = x¢/Sj; s € S-j = XS

Payoff Function: u = {u;,i € I}, u; : S = R.
Interpretation: players have preferences over outcomes and each strategy profile s pins
down an outcome (potentially the same outcome).

More on this later with extensive-form games.

Write uj(s) = uj(s;, S-)).
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Normal-Form Games

A normal-form game is a tuple I' = (/, S, u) where

Set of Players: i € /.

Strategy Space: s; € S;

Strategy profile: s € S = x¢/Sj; s € S-j = XS
Payoff Function: u = {u;,i € I}, u; : S = R.

Interpretation: players have preferences over outcomes and each strategy profile s pins
down an outcome (potentially the same outcome).

More on this later with extensive-form games.
Write u;(s) = uj(sj, s-)-
Y is mutual knowledge = all players know Y

Y is common knowledge = all players know Y, all players know that all players know Y,
all players know that all players know that all players know Y, etc.

Game of complete information: all aspects of the game are common knowledge.

Assume that all games are of complete information; later we'll discuss games of
incomplete information.
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Normal-Form Games

Strategies
e Pure strategy s; € S,.
o Mixed strategy o; € ¥, = A(S)); 6 € £:= x;c/A(S); 6 € T 1= XjepjA(S)).
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Normal-Form Games

Strategies
e Pure strategy s; € S,.
o Mixed strategy o; € ¥, = A(S)); 6 € £:= x;c/A(S); 6 € T 1= XjepjA(S)).
o ATT! X = X;g/A(S)) 7 A(x¢)S)). Why? Example?
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Normal-Form Games

Strategies
e Pure strategy s; € S,.
o Mixed strategy o; € ¥, = A(S)); 6 € £:= x;c/A(S); 6 € T 1= XjepjA(S)).
o ATT! X = X;g/A(S)) 7 A(x¢)S)). Why? Example?
o Write o(s) for [ ;¢ oi(s)).
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Normal-Form Games

Strategies
e Pure strategy s; € S,.
o Mixed strategy o, € £, := A(S)); 6 € £ = x;c/A(S)); 60— € Z_;
o ATT! X = X;g/A(S)) 7 A(x¢)S)). Why? Example?
o Write o(s) for [ ;¢ oi(s)).
o Expected payoff u; : £ — R (slight abuse of notation)

o Ui(0) = Eolu] = > o(s)uis) = > [ o(suls).

seS seSs jel
Interpretation: u; as Bernoulli index; players EU maximisers.
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Overview

3. Strict Dominance



Solution Concepts

Solution concept: Takes game I and makes predictions regarding outcomes.
Singleton-valued I — S.

Set-valued (what can and cannot happen) I — 2°.
(Different from multiplicity.)

Deterministic vs Stochastic prediction: considering S or £ or A(S).
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Solution Concepts

Solution concept: Takes game I and makes predictions regarding outcomes.
Singleton-valued I — S.

Set-valued (what can and cannot happen) I — 2°.
(Different from multiplicity.)

Deterministic vs Stochastic prediction: considering S or £ or A(S).
Desired properties:

Existence: something is predicted.

Uniqueness: prediction is sharp. (desired?)

Continuity of the prediction?
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Solution Concepts

Solution concept: Takes game I and makes predictions regarding outcomes.
Singleton-valued I — S.

Set-valued (what can and cannot happen) I — 2°.
(Different from multiplicity.)

Deterministic vs Stochastic prediction: considering S or £ or A(S).
Desired properties:

Existence: something is predicted.

Uniqueness: prediction is sharp. (desired?)

Continuity of the prediction?
For simplicity, assume game is finite, |S| < oo.

Results generalise beyond finite games, but require some care in definitions and,
sometimes, restrictions on S; and u; (e.g., compactness, continuity, etc.).
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Modified Split or Steal (Golden Balls, ITV 2007-09)

Col Player
Split Steal
Split  J/2,J/2 0,J

RowPlayer ool g0 U/4 u/4

Players? Strategies?

Payoffs?
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Modified Split or Steal (Golden Balls, ITV 2007-09)

Col Player
Split Steal
Split  J/2,J/2 0,J

RowPlayer ool g0 U/4 u/4

Players? Strategies?
Payoffs?
Prediction?

Gongalves (UCL) 10. Strategic Interaction



Strict Dominance

{ Definition

FixI' = (I, S, u).

(i) Strategy o; € X; of player i strictly dominates strategy o/ € ¥; iff uj(c;, 0-;) >
ui(of,6-j) Vo_; € Z_;.

(ii) Strategy o; € X; of player i is strictly dominant iff it strictly dominates every o] €
I \{oj}.

(iii) Strategy o; € L, of player i is strictly dominated by strategy o] € ¥; iff u;(c;, 6-)) <
ui(o],6-j) Vo_; € X_;.
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Strict Dominance

{ Definition

FixI' = (I, S, u).

(i) Strategy o; € X; of player i strictly dominates strategy o/ € ¥; iff uj(c;, 0-;) >
ui(of,6-j) Vo_; € Z_;.

(ii) Strategy o; € X; of player i is strictly dominant iff it strictly dominates every o] €
I \{oj}.

(iii) Strategy o; € L, of player i is strictly dominated by strategy o] € ¥; iff u;(c;, 6-)) <
ui(o],6-j) Vo_; € X_;.

Idea: strong predictions

No one chooses strictly dominated strategies as there is something else that is
strictly better.

If a strategy is strictly dominant, all others are strictly dominated, the player better
choose the strictly dominant one.

Strict dominance is ordinal concept: doesn’t matter if dominates by a little or a lot.
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Modified Split or Steal (Golden Balls, ITV 2007-09)

Col Player
Split Steal
Split  J/2,J/2 0,J

RowPlayer ool g0 U/4 u/4

Note: Dominance relation between strategies 7 Pareto dominance of outcomes
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Strict Dominance

{ Definition

FixIT' = (I, S, u).

(i) Strategy o; € X; of player i strictly dominates strategy o/ € ¥; iff uj(c; 0-;) >
ui(o],6-j) Vo_; € Z_;.

(i) Strategy o; € £; of player i is strictly dominant iff it strictly dominates every o/ €
L\ {o}}.

(iii) Strategy o; € ¥, of player i is strictly dominated by strategy o] € ¥; iff u;(c;, 6-)) <
ui(o],0-;) Vo_; € £_,.

Define strict dominance relation for player i.
Is it reflexive? Complete? Transitive? Does it induce a lattice?
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Strict Dominance

{ Definition

FixIT' = (I, S, u).

(i) Strategy o; € X; of player i strictly dominates strategy o/ € ¥; iff uj(c; 0-;) >
ui(o],6-j) Vo_; € Z_;.

(i) Strategy o; € £; of player i is strictly dominant iff it strictly dominates every o/ €
L\ {o}}.

(iii) Strategy o; € ¥, of player i is strictly dominated by strategy o] € ¥; iff u;(c;, 6-)) <
ui(o],0-;) Vo_; € £_,.

Define strict dominance relation for player i.
Is it reflexive? Complete? Transitive? Does it induce a lattice?

Is there always a dominant strategy? Can there be more than one dominant strategy?
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Strict Dominance

{ Definition

FixIT' = (I, S, u).

(i) Strategy o; € X; of player i strictly dominates strategy o/ € ¥; iff uj(c; 0-;) >
ui(o],6-j) Vo_; € Z_;.

(i) Strategy o; € £; of player i is strictly dominant iff it strictly dominates every o/ €
L\ {o}}.

(iii) Strategy o; € ¥, of player i is strictly dominated by strategy o] € ¥; iff u;(c;, 6-)) <
ui(o],0-;) Vo_; € £_,.

Define strict dominance relation for player i.
Is it reflexive? Complete? Transitive? Does it induce a lattice?

Is there always a dominant strategy? Can there be more than one dominant strategy?

Lemma

There can be at most one strictly dominant strategy for each player.

(Why?)
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Strictly Dominant Strategy

Lemma

If 6; is strictly dominant, then 3s; € S; : 6;(s;) = 1.
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Strictly Dominant Strategy

Lemma

If 6; is strictly dominant, then 3s; € S; : 6;(s;) = 1.

Proof

Suppose not. Then uj(c;, 0-;) > Ui(s;, 0-,)Vs; € supp(o;).



Strictly Dominant Strategy

Lemma
If 6; is strictly dominant, then 3s; € S; : 6;(s;) = 1.

Proof

Suppose not. Then uj(c;, 0-;) > Ui(s;, 0-,)Vs; € supp(o;).
But this |mp||es that U,'(G,‘, 67,') = ZS, G,‘(S,‘)U,‘(G,‘, 67,') > ZS, Gj(S/)U,‘(S[, (57,') = U,‘(G,‘,Gfl‘), a

contradiction. O
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Strictly Dominant Strategy

Lemma

If 6; is strictly dominant, then 3s; € S; : 6;(s;) = 1.

Proof

Suppose not. Then uj(c;, 0-;) > Ui(s;, 0-,)Vs; € supp(o;).

But this |mp||es that U,'(G,‘, 67,') = ZS, G,‘(S,‘)U,‘(G,‘, 67,') > ZS, Gj(S/)U,‘(S[, (57,') = U,‘(G,‘,Gfl‘), a
contradiction. O

In other words, only pure strategies are strictly dominant.
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Strictly Dominant Strategy

Enough to consider pure strategies to assess if s; is strictly dominant?
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Strictly Dominant Strategy

Enough to consider pure strategies to assess if s; is strictly dominant?

Lemma

s; is strictly dominant if and only if u;(s;, s—;) > ui(s], s—;) s/ € S;\{si},s-; € S—;.

Yes, it is enough to consider pure strategies to assess if s; is strictly dominant.

Gongalves (UCL) 10. Strategic Interaction



Strictly Dominant Strategy

Enough to consider pure strategies to assess if s; is strictly dominant?

Lemma

s; is strictly dominant if and only if u;(s;, s—;) > ui(s],s—;) Vs € Sj\{s;},s—; € S;

Yes, it is enough to consider pure strategies to assess if s; is strictly dominant.

Proof

— : By definition.
—
ui(si,s—j) > uj(sj, s-) Vsj € Sj\{s}},s-j € S

= Uj(5j,0-) = g es., O-i(S-)Ui(Si S=i) > X5 e, O-i(S-i)ui(s], 5-) = uj(sj, 6-)
VS,{ € Si\{sj},o_; € X
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Strictly Dominant Strategy

Enough to consider pure strategies to assess if s; is strictly dominant?

Lemma

s; is strictly dominant if and only if u;(s;, s—;) > ui(s], s—;) s/ € S;\{si},s-; € S—;.

Yes, it is enough to consider pure strategies to assess if s; is strictly dominant.

Proof

— : By definition.
—:

ui(si,s—j) > uj(sj, s-) Vsj € Sj\{s}},s-j € S

= Uj(5j,0-) = g es., O-i(S-)Ui(Si S=i) > X5 e, O-i(S-i)ui(s], 5-) = uj(sj, 6-)
VS,{ € Si\{sj},o_; € X

= (s, o) > 2sles, oi(sj)ui(s],s-j) = ui(o;,0-) Voj € L\ {8s} 0 €X,; O
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Strictly Dominated Strategy

Enough to consider opponents’ pure strategies to assess if s; is strictly dominated?
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Strictly Dominated Strategy

Enough to consider opponents’ pure strategies to assess if s; is strictly dominated?

Lemma

o; is strictly dominated by o] if and only if uj(c;, s—;) < Ui(o],s—;) forall s_; € S_;.

Yes, it suffices to check opponents’ pure strategies to assess if strategy strictly
dominated.

Often say o; is strictly dominated (you'll need to explain what strictly dominates o;).
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Strictly Dominated Strategy

Enough to consider opponents’ pure strategies to assess if s; is strictly dominated?

Lemma

o; is strictly dominated by o] if and only if uj(c;, s—;) < Ui(o],s—;) forall s_; € S_;.

Yes, it suffices to check opponents’ pure strategies to assess if strategy strictly
dominated.

Often say o; is strictly dominated (you'll need to explain what strictly dominates o;).
Proof

= : By definition.
—:

o; is strictly dominated by 6] = u;(c;,5-j) < Uj(0],5-;) Vs—; € S

= Uj(01,0-) = g es., O-i(S-)Uj(0 5-) < Xg_es., O-i(S-)Ui(0],5-)) = ui(o], 6-))
Vo_ € X,

O
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Strictly Dominated Strategy

Col Player

L R

T 00 32

Row Player M 14 1,1
B 30 01

Which strategy is strictly dominated?
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Strictly Dominated Strategy

Col Player

L R

T 00 32

Row Player M 14 1,1
B 30 01

Which strategy is strictly dominated?
No pure strategy of Player 1 strictly dominates another pure strategy.

However: 1/2 T + 1/2 B strictly dominates M!
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Strictly Dominated Strategy

Col Player

L R

T 00 32

Row Player M 14 1,1
B 30 01

Which strategy is strictly dominated?
No pure strategy of Player 1 strictly dominates another pure strategy.
However: 1/2 T + 1/2 B strictly dominates M!

Moral of the story: you may need to consider mixed strategies to assess which
strategies are strictly dominated

l.e., it suffices to check opponents’ pure strategies to assess if strategy strictly
dominated, but do need to check own mixed strategies.
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Strictly Dominated Strategy

If mixed strategy is stricty dominated, is there a pure strategy which is strictly
dominated?

Not necessarily...

Col Player

L R

T -40 32

Row Player M 1] 11
B 34 -4]1

P1 has no strictly dominated pure strategy, but 1/2 T + 1/2 B is strictly dominated by M.
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Strictly Dominated Strategy

Lemma

If s; is strictly dominated, then any o; € %; : 6;(s;) > 0 is strictly dominated.
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Strictly Dominated Strategy

Lemma

If s; is strictly dominated, then any o; € %; : 6;(s;) > 0 is strictly dominated.

Proof

Jo; : s; strictly dominated by o.
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Lemma
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Proof
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Define 6] : 6'(s]) = oi(s)o/(s]) + s/ 7 s;}oi(s]). WIS 6] € ;.



Strictly Dominated Strategy

Lemma

If s; is strictly dominated, then any o; € %; : 6;(s;) > 0 is strictly dominated.
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Lemma
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Strictly Dominated Strategy

Lemma

If s; is strictly dominated, then any o; € %; : 6;(s;) > 0 is strictly dominated.

Proof

Jo; : s; strictly dominated by o.
Define 6] : 6'(s]) = oi(s)o/(s]) + s/ 7 s;}oi(s]). WIS 6] € ;.

() oi" > 0and (i) X 67'(s7) = 6i(8)) Xosr 07(S]) + F516, Gi(S7) = 0i(si) + 1= () = 1.
Then,Vo_; € X_,

ui(o;, 6-) = oj(spu(s;, o) + Z oi(s/)ui(si, )
S 75i

< oi(sj)ulof,0-) + > _ o(s))ui(si, o)
/750



Strictly Dominated Strategy

Lemma

If s; is strictly dominated, then any o; € %; : 6;(s;) > 0 is strictly dominated.

Proof

Jo; : s; strictly dominated by o.
Define 6] : 6'(s]) = oi(s)o/(s]) + s/ 7 s;}oi(s]). WIS 6] € ;.

() oi" > 0and (i) X 67'(s7) = 6i(8)) Xosr 07(S]) + F516, Gi(S7) = 0i(si) + 1= () = 1.
Then,Vo_; € X_,

ui(oy, 0-) = oi(s;)u(s;, 0-) + Y oi(shui(s]. o)
S/ 75i
< Gi(s)u(s), o) + > oi(s))ui(s], 0-)
s/ 75i
= Z [0/(3 )G/(S/) + 1{31 7 sjyoi(s )] u/(sl i)

’
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Strictly Dominated Strategy

Lemma

If s; is strictly dominated, then any o; € %; : 6;(s;) > 0 is strictly dominated.

Proof

Jo; : s; strictly dominated by o.
Define 6] : 6'(s]) = oi(s)o/(s]) + s/ 7 s;}oi(s]). WIS 6] € ;.

() oi" > 0and (i) X 67'(s7) = 6i(8)) Xosr 07(S]) + F516, Gi(S7) = 0i(si) + 1= () = 1.
Then,Vo_; € X_,

ui(oy, 0-) = oi(s;)u(s;, 0-) + Y oi(shui(s]. o)
S/ 75i
< oi(sj)ulof,0-) + > _ o(s))ui(si, o)
s/ 75i
= Z [0/(3 )G/ (S/) + 1{31 7 sj}o;(s )] u/(sl i) = U,'(G,(/,(S_/) U

’
Sr
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Strictly Dominated Strategy

Lemma

If s; is strictly dominated, then any o; € %; : 6;(s;) > 0 is strictly dominated.

A mixed strategy involving a strictly dominated strategy is strictly dominated.
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Strictly Dominated Strategy

Lemma
If s; is strictly dominated, then any o; € %; : 6;(s;) > 0 is strictly dominated.

A mixed strategy involving a strictly dominated strategy is strictly dominated.

Can also show the more general but arguably less useful property:

Lemma
o; is strictly dominated <= Va € (0,1],Vo] € £, ao; + (1 - a)o] is strictly dominated.
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Overview

4. Iterated Elimination of Strictly Dominated Strategies (IESDS)



Iterated Elimination of Strictly Dominated Strategies (IESDS)

Motivation: ‘Common knowledge of rationality’ (CKR)
CK that players maximise payoffs.

Payoff maximisation = means to describe behaviour =—> CKR = CK of how people
behave.

Know strictly dominated strategies not chosen. Know that everyone knows that strictly
dominated strategies not chosen = can ignore strictly dominated strategies.

[terate reasoning...
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Iterated Elimination of Strictly Dominated Strategies (IESDS)

Definition

Given (/,S,u), S>° C S survives IESDS iff S%° = x;¢,S7° and EI(Sf‘)k>0 st
(i) S0 := Sjand S = My>(SK;

(i) fork >1,8F c sk

(iii) fork > 1,57 € SS\ S s strictly dominated in the restricted game (I, x;Sf ", u);
)

(iv) Nos; € S7* is strictly dominated in the game (/, S, u).
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Iterated Elimination of Strictly Dominated Strategies (IESDS)

Definition

Given (/,S,u), S>° C S survives IESDS iff S%° = x;¢,S7° and EI(Sf‘)k>0 st
(i) S0 := Sjand S = My>(SK;

(i) fork >1,8F c sk

(iii) fork > 1,57 € SS\ S s strictly dominated in the restricted game (I, x;Sf ", u);
)

(iv) Nos; € S7* is strictly dominated in the game (/, S, u).

Remark

In finite games (|S| < oo) order of elimination doesn't matter: always get the same limit
set S°.

Beyond finite games, sufficient compact S; and usc u;; in general, things can go awry
(see Dufwenberg & Stegeman 2004 Ecta)
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Iterated Elimination of Strictly Dominated Strategies (IESDS)

Consider IESDS for game with mixed strategies:

{ Definition
Given (I,Z,u), £°° C Z survives IESDS iff Z°° = x> and H(Zf‘)kzo st
() 2 =xjand T = meOEf-(;
(i) fork >1,5f c =k
(iii) fork >1,0; € EﬁH \Ef is strictly dominated in the restricted game (/, ijjH, uy;
(iv) No o; € X7 is strictly dominated in the game (/,X°°, u).
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Iterated Elimination of Strictly Dominated Strategies (IESDS)

Consider IESDS for game with mixed strategies:

{ Definition
Given (I,Z,u), £°° C Z survives IESDS iff Z°° = x> and H(Zf‘)kzo st
() 2 =xjand T = meOEf-(;
(i) fork >1,5f c =k
(iii) fork >1,0; € EﬁH \):f is strictly dominated in the restricted game (/, szf"1, uy;
(iv) No o; € X7 is strictly dominated in the game (/,X°°, u).

{ Lemma

o; € £° = supp(c;) C S°.

Why?

Gongalves (UCL) 10. Strategic Interaction 19



Iterated Elimination of Strictly Dominated Strategies (IESDS)

Col Player
L R
T 31 01
Row Player M 0,1 3]
B 21 21

No pure strategies are strictly dominated: S = S*°.
Yet, 1/5T +1/5 M is strictly dominated by B.
Conclusion: S = supp(Z™°) but A(S?®) 7 £7°.

Gongalves (UCL) 10. Strategic Interaction 20



Iterated Elimination of Strictly Dominated Strategies (IESDS)

Definition

I' = {/,S,u) is dominance-solvable if |S™| = 1, i.e,, a single strategy profile survives
|[ESDS.

A very strong prediction.

Gongalves (UCL) 10. Strategic Interaction
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Iterated Elimination of Strictly Dominated Strategies (IESDS)

Definition

I' = {/,S,u) is dominance-solvable if |S™| = 1, i.e,, a single strategy profile survives
|[ESDS.

A very strong prediction.

Corollary

S°]=1 <= [£%°|=1.

Gongalves (UCL) 10. Strategic Interaction
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Example: Provision of Public Goods

[ Example

N team members decide how much time to allocate to group work vs. individual work.

The quality of the outcome of the shared task depends on the (geometric) avg. ef-
fort/time spent of the team: [T; s;"".

The quality of the outcome of the individual task only depends on the individual time
spent: 1-s;.




Example: Provision of Public Goods

[ Example

N team members decide how much time to allocate to group work vs. individual work.

The quality of the outcome of the shared task depends on the (geometric) avg. ef-
fort/time spent of the team: [T; s;"".

The quality of the outcome of the individual task only depends on the individual time
spent: 1-s;.

Get paid a € (1, N) for the quality of the shared task and 1 for the individual task.

Goal: maximise payment.




Example: Provision of Public Goods

[ Example

N team members decide how much time to allocate to group work vs. individual work.

The quality of the outcome of the shared task depends on the (geometric) avg. ef-
fort/time spent of the team: [T; s;"".

The quality of the outcome of the individual task only depends on the individual time
spent: 1-s;.

Get paid a € (1, N) for the quality of the shared task and 1 for the individual task.
Goal: maximise payment.

Strategy space S; := [0, 1].

Payoffs: uj(s) = ([ s}/N) +1-s;.
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Example: Provision of Public Goods

{ Example
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Example: Provision of Public Goods

' Example

S = 10,115 = [T ui(s) = as)5/N +1-s;.

Claim: there is no strictly dominant strategy.




Example: Provision of Public Goods

Example

S =015 = [T ui(s) = as)s)N +1-

Claim: there is no strictly domlnant strategy
Foranys; > 0,and [;4s; = 0, ui(sj, s—j) = 1= s; < 1= (0, s-).
Hence, Vs; > 0, s; cannot be strictly dominant.




Example: Provision of Public Goods

Example

S =015 = [T ui(s) = as)s)N +1-

Claim: there is no strictly domlnant strategy.
Foranys; > 0,and [;4s; = 0, ui(sj, s—j) = 1= s; < 1= (0, s-).
Hence, Vs; > 0, s; cannot be strictly dominant,
Moreover, for s; = 0 and [T sj = 1, 14;(0,5-) = 1< a = 4;(1, ).
Hence, s; = 0 cannot be strictly dominant.
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Example: Provision of Public Goods

' Example

S = 10,115 = [Ty ui(s) = as)5/N +1-s;.

Claim: the game is dominance solvable.
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Example

S = 10,115 = [Ty ui(s) = as)5/N +1-s;.
Claim: the game is dominance solvable.
Letsq = (oc/N)N/(N_”. WTS any s; > s) is strictly dominated by s. Vs—;.




Example: Provision of Public Goods

Example

S = 10,115 = [Ty ui(s) = as)5/N +1-s;.
Claim: the game is dominance solvable.
Letsq = (oc/N)N/(N_”. WTS any s; > s) is strictly dominated by s. Vs—;.
Ui(S@y + € 5-i) = ui(Say. S-1)

= (O(,[S(—I) + e]1/N§,VN +1- S(—l) - e) - ((X[S(—l)]‘l/Ng‘}l/N +1- S('l))




Example: Provision of Public Goods

Example

S = 10,115 = [Ty ui(s) = as)s)N +1-
Claim: the game is domlnance solvable.
Letsq = (oc/N)N/(N_”. WTS any s; > s) is strictly dominated by s. Vs—;.
Ui(Sqry +€.5-i) = ui(S(ry. S-i)
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Example

S = 10,115 = [Ty ui(s) = as)s)N +1-
Claim: the game is domlnance solvable.
Letsq = (oc/N)N/(N_”. WTS any s; > s) is strictly dominated by s. Vs—;.
Ui(Sqry +€.5-i) = ui(S(ry. S-i)
( [s + e]VN VN 41— Sa) ~ e) = (oc[s(1)]1/N§,7/N +1- SU))
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Example: Provision of Public Goods

Example

S = 10,115 = [Ty ui(s) = as)s)N +1-
Claim: the game is domlnance solvable.
Letsq = (oc/N)N/(N_”. WTS any s; > s) is strictly dominated by s. Vs—;.
Ui(Sqry +€.5-i) = ui(S(ry. S-i)
( [s + e]VN VN 41— Sa) ~ e) = (oc[s(1)]1/N§,7/N +1- SU))

0C§.~I/N ([3(1) +e]1/N _ [8(1)]1/N) —e

=un 1 [S ]1/N‘I

< OS;
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Example: Provision of Public Goods

Example

S = 10,115 = [Ty ui(s) = as)s)N +1-
Claim: the game is dommance solvable.

Ui(Sqry +€.5-i) = ui(S(ry. S-i)
( [s + e]VN VN 41— Sa) ~ e) = (oc[s(1)]1/N§,7/N +1- SU))
_ Oc51//\/ ([3(1) + VN - [s(1)]1/N) —e

N1 8
< ocs,VNf[s ]1/N sz

(glj//\/z[s ] (N-T)/N 1)e

(Rl -1)e<o

IN

Letsq = (oc/N)N/(N_”. WTS any s; > s) is strictly dominated by s. Vs—;.
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Example: Provision of Public Goods

Example

S = 10,115 = [Ty ui(s) = as)5/N +1-s;.
Claim: the game is dominance solvable.
WTS get induction: any s; > sy is iteratedly strictly dominated by

S = s(k)(oc/N)N/(N_U givens; € [0,5p9] = §; €10, (s(k))AH].
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Example

S = 10,115 = [Ty ui(s) = as)5/N +1-s;.
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Example

S = 10,115 = [Ty ui(s) = as)5/N +1-s;.
Claim: the game is dominance solvable.
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Example: Provision of Public Goods

Example

S = 10,115 = [Ty ui(s) = as)5/N +1-s;.
Claim: the game is dominance solvable.
WTS get induction: any s; > sy is iteratedly strictly dominated by
Sty = Sl /N)N/(N—1) N1,
Ui(S(ks1) + € S=i) = Ui(S(ks1), S—i)
1/N§,7/N +1=Sgan) — e) = (oc[s(kﬂ)]
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Example: Provision of Public Goods

Example

S = 10,115 = [Ty ui(s) = as)5/N +1-s;.
Claim: the game is dominance solvable.
WTS get induction: any s; > sy is iteratedly strictly dominated by
Sty = Sl /N)N/(N—1) N1,
Ui(S(ks1) + € S=i) = Ui(S(ks1), S—i)
VNS +1 = 5 = e) - (OC[S(M)]
_ aglj/N ([S(m) + N - [S(k+1)]1/N) —e
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Example: Provision of Public Goods

Example

S = 10,115 = [Ty ui(s) = as)5/N +1-s;.
Claim: the game is dominance solvable.
WTS get induction: any s; > sy is iteratedly strictly dominated by
Sty = Sl /N)N/(N—1) N1,
Ui(S(ks1) + € S=i) = Ui(S(ks1), S—i)

= ((X[S(k_H) + 6]1/N§;I/N +1- S(k+’l) - e) - ((X[S(k+1)]1/N§?/N +1- S(k+1))
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Example: Provision of Public Goods

Example

S = 10,115 = [Ty ui(s) = as)5/N +1-s;.
Claim: the game is dommance solvable.
WTS get induction: any s; > sy is iteratedly strictly dominated by
Ske) = s(k)(oc/N)N/(N_U givens; € [0,sy] = 5 €0, (s4)" L.
Ui(S(ks1) + € S-i) = Ui(S(kany, S-i)

_ (oc[s(k + + /NN 41— S = e) (OC[S(k+1)]1/N§,VN +1- S(k+1))
_ (X, ([S e]1/N _ [S(k+1)]1/N) —e
< %élj/N[S(kH)]VN%e — 5

(§?/N%[s(k+1)]’w’”/” = 1) e
((S(k) (N*'I)/N%[S(kﬂ)]*(N*‘l)/N _ 1) e

)
i} (N-TYN N/N-T)-(N-T)/N & _
(S) [S(k) (0/N) ] = 1) e<0.
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L
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Example: Provision of Public Goods

Example

S = 10,115 = [Ty ui(s) = as)5/N +1-s;.
Claim: the game is dominance solvable.
Shown: for any k, any s; > s,y is iteratedly strictly dominated by

S = s(k)(oc/N)N/(N_U givens; € [0,5p9] = § €10, (s(k))AH].

With s(g) := 1, defines decreasing sequence: sy = s(k_1)((x/N)N/(N_1) = (o/N)N D)
and limg_, oo Sy = 0.
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Overview

5. Weak Dominance
- 2nd-Price Auction



Original Split or Steal (Golden Balls, ITV 2007-09)

Col Player
Split Steal
Split  J/2,J/2 0, J

RowPlayer a0 0,0

No strictly dominant strategies.

Prediction?

Gongalves (UCL) 10. Strategic Interaction
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Weak Dominance

{ Definition
FixI' = (I, S, u).
(i) Strategy o; € £, of player i is weakly dominated by strategy o] € %; iff u;(c}, 6-;) <
U/'(G/(,G_,') VG_/' S Z_,' and 3(5’,/ S Z_,' X U,‘((S,', Gl,/-) < U,‘(G/(,G/,,-)A
(i) Strategy o; € X; of player i weakly dominant iff it weakly dominates every other
strategy o.

Define weak dominance relation for player i.
s it reflexive? Complete? Transitive? Does it induce a lattice?
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Weak Dominance

{ Definition
FixI' = (I, S, u).
(i) Strategy o; € £, of player i is weakly dominated by strategy o] € %; iff u;(c}, 6-;) <
U/'(G/(,G_,') VG_/' S Z_,' and 3(5’,/ S Z_,' X U,‘((S,', Gl,/-) < U,‘(G/(,G/,,-)A
(i) Strategy o; € X; of player i weakly dominant iff it weakly dominates every other
strategy o.

Define weak dominance relation for player i.
s it reflexive? Complete? Transitive? Does it induce a lattice?

Strict dominance implies weak dominance, but not the other way around.
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Weak Dominance

{ Definition
FixI' = (I, S, u).
(i) Strategy o; € £, of player i is weakly dominated by strategy o] € %; iff u;(c}, 6-;) <
U/'(G/(,G_,') VG_/' S Z_,' and 3(5’,/ S Z_,' X U,‘((S,', Gl,/-) < U,‘(G/(,G/,,-)A
(i) Strategy o; € X; of player i weakly dominant iff it weakly dominates every other
strategy o.

Define weak dominance relation for player i.
s it reflexive? Complete? Transitive? Does it induce a lattice?

Strict dominance implies weak dominance, but not the other way around.
Idea: Iterated elimination of weakly dominated strategies!

Why strict inequality? Don't want to eliminate everything in one go!
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Weak Dominance

{ Definition
FixI' = (I, S, u).
(i) Strategy o; € £, of player i is weakly dominated by strategy o] € %; iff u;(c}, 6-;) <
U/'(G/(,G_,') VG_/' S Z_,' and 3(5’,/ S Z_,' X U,‘((S,', Gl,/-) < U,‘(G/(,G/,,-)A

(i) Strategy o; € X; of player i weakly dominant iff it weakly dominates every other
strategy o.

Define weak dominance relation for player i.
s it reflexive? Complete? Transitive? Does it induce a lattice?

Strict dominance implies weak dominance, but not the other way around.
Idea: Iterated elimination of weakly dominated strategies!
Why strict inequality? Don't want to eliminate everything in one go!

Is there always a weakly dominant strategy? Can there be more than one dominant
strategy?
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Weak Dominance

{ Lemma

(i) There can be at most one weakly dominant strategy for each player.
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(i) If o; is weakly dominant, then 3s; : 6;(s;) = 1.
(Weakly dominant strategies need to be degenerate.)
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(i) There can be at most one weakly dominant strategy for each player.
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3s’; € S uilsi, L)) > ui(s], s%)).
(Suffices to consider pure strategies in characterising weakly dominant strate-
gies.)




Weak Dominance

{ Lemma

(i) There can be at most one weakly dominant strategy for each player.

(i) If o; is weakly dominant, then 3s; : 6;(s;) = 1.
(Weakly dominant strategies need to be degenerate.)

(iii) s;is weakly dominant if and only if Vs{ #'s;, uj(s;, s—;) > uj(s,s-j), ¥s—; € S_;and
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Weak Dominance

{ Lemma

(i) There can be at most one weakly dominant strategy for each player.

(i) If o; is weakly dominant, then 3s; : 6;(s;) = 1.
(Weakly dominant strategies need to be degenerate.)

(iii) s;is weakly dominant if and only if Vs{ #'s;, uj(s;, s—;) > uj(s,s-j), ¥s—; € S_;and
3s’; € S uilsi, L)) > ui(s], s%)).
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gies.)
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Weak Dominance

{ Lemma

(i) There can be at most one weakly dominant strategy for each player.

(i) If o; is weakly dominant, then 3s; : 6;(s;) = 1.
(Weakly dominant strategies need to be degenerate.)

(iii) s;is weakly dominant if and only if Vs{ #'s;, uj(s;, s—;) > uj(s,s-j), ¥s—; € S_;and
3s’; € S uilsi, L)) > ui(s], s%)).
(Suffices to consider pure strategies in characterising weakly dominant strate-
gies.)

(iv) o;is weakly dominated by o] if and only if uj(c;, s-;) < uj(o],s-;) Vs—; € S—; and
33’,,- S 87,' : U,‘(G,‘,Sfj) < U/(G;,Sf,').
(Suffices to consider opponents’ pure strategies in characterising weakly dom-
inated strategies.)

(v) If s;is weakly dominated, then any o; € T, : 6j(s;) > 0 is weakly dominated.
(Mixed strategies involving weakly dominated strategies are weakly dominated.)

(vi) o is weakly dominated <= Vo € (0,1 Vo, € X, ao; + (1 - a)o; is weakly
dominated. (Bis.)
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lterated Elimination of Weakly Dominated Strategies

Col Player
A2 B2 C2
Al 20 00 10
Row Player BT 11 11 11
Ct 12 10 01

What survives IEWDS?
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lterated Elimination of Weakly Dominated Strategies

Col Player
A2 B2 C2
Al 20 00 10
Row Player BT 11 11 11
Ct 12 10 01

What survives IEWDS?
(1) C1<B1
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Col Player
A2 B2 C2
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Row Player BT 11 11 11
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lterated Elimination of Weakly Dominated Strategies

Col Player
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Al 20 00 10
Row Player BT 11 11 11
Ct 12 10 01
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Col Player
A2 B2 C2
Al 20 00 10
Row Player BT 11 11 11
Ct 12 10 01
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lterated Elimination of Weakly Dominated Strategies

Col Player
A2 B2 C2
Al 20 00 10
Row Player BT 11 11 11
Ct 12 10 01
What survives IEWDS?
(1) C1<BT; {A1B1)x{A2,B2,C2}

(2) B2<C2
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lterated Elimination of Weakly Dominated Strategies

Col Player
A2 B2 C2
Al 20 00 10
Row Player BT 11 11 11
Cl 12 10 01
What survives IEWDS?
(1) C1<BT; {A1B1)x{A2,B2,C2}

(2) B2<C2; C1<B1
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lterated Elimination of Weakly Dominated Strategies

Col Player

A2 B2 C2

Al 20 00 10

Row Player BT 11 11 11

Cl 12 10 01
What survives IEWDS?

(1) C1<BT; {A1B1)x{A2,B2,C2}

(2) B2<C2; C1<B1; B1<A1
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lterated Elimination of Weakly Dominated Strategies

Col Player
A2 B2 C2
Al 20 00 10
Row Player BT 11 11 11
Cl 12 10 01
What survives IEWDS?
(1) C1<BT; {A1B1)x{A2,B2,C2}
(2) B2<C2; C1<B1; B1<AT; {AT}x{A2,C2}
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lterated Elimination of Weakly Dominated Strategies

Col Player
A2 B2 C2
Al 20 00 10
Row Player BT 11 11 11
Cl 12 10 01
What survives IEWDS?
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(2) B2<C2; C1<B1; B1<AT; {AT}x{A2,C2}
(8) B2<C2
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lterated Elimination of Weakly Dominated Strategies

Col Player
A2 B2 C2
Al 20 00 10
Row Player BT 11 11 11
Cl 12 10 01
What survives IEWDS?
(1) C1<BT; {A1B1)x{A2,B2,C2}
(2) B2<C2; C1<B1; B1<AT; {AT}x{A2,C2}
(3) B2<C2; B1<A1
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lterated Elimination of Weakly Dominated Strategies

Col Player
A2 B2 C2
Al 20 00 10
Row Player BT 11 11 11
Cl 12 10 01
What survives IEWDS?
(1) C1<BT; {A1B1)x{A2,B2,C2}
(2) B2<C2; C1<B1; B1<AT; {AT}x{A2,C2}
(8) B2<C2; B1<AT; C2<A2
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lterated Elimination of Weakly Dominated Strategies

Col Player
A2 B2 C2
Al 20 00 10
Row Player BT 11 11 11
Cl 12 10 01
What survives IEWDS?
(1) C1<BT; {A1B1)x{A2,B2,C2}
(2) B2<C2; C1<B1; B1<AT; {AT}x{A2,C2}
(3) B2<C2; B1<AT; C2<A2; C1<A1
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lterated Elimination of Weakly Dominated Strategies

Col Player
A2 B2 C2
Al 20 00 10
Row Player BT 11 11 11
Cl 12 10 01
What survives IEWDS?
(1) C1<BT; {A1B1)x{A2,B2,C2}
(2) B2<C2; C1<B1; B1<AT; {AT}x{A2,C2}
(3) B2<C2; B1<AT; C2<A2; C1<AT; (A1,A2)
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lterated Elimination of Weakly Dominated Strategies

Col Player
A2 B2 C2
Al 20 00 10
Row Player BT 11 11 11
Cl 12 10 01
What survives IEWDS?
(1) C1<BT; {A1B1)x{A2,B2,C2}
(2) B2<C2; C1<B1; B1<AT; {AT}x{A2,C2}
(3) B2<C2; B1<AT; C2<A2; C1<AT; (A1,A2)
Conclusion: Order of deletion matters!
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lterated Elimination of Weakly Dominated Strategies

Col Player
A2 B2 C2
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(2) B2<C2; C1<B1; B1<AT; {AT}x{A2,C2}
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Conclusion: Order of deletion matters!

Iterated admissibility: maximal simultaneous deletion of weakly dominated actions
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lterated Elimination of Weakly Dominated Strategies

Col Player
A2 B2 C2
Al 20 00 10
Row Player BT 11 11 11
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(2) B2<C2; C1<B1; B1<AT; {AT}x{A2,C2}
(3) B2<C2; B1<AT; C2<A2; C1<AT; (A1,A2)
Conclusion: Order of deletion matters!
Iterated admissibility: maximal simultaneous deletion of weakly dominated actions
In example: C1<B1 & B2,C2<A2
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lterated Elimination of Weakly Dominated Strategies

Col Player
A2 B2 C2
Al 20 00 10
Row Player BT 11 11 11
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What survives IEWDS?
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Conclusion: Order of deletion matters!
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In example: C1<B1 & B2,C2<A2
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lterated Elimination of Weakly Dominated Strategies

Col Player
A2 B2 C2
Al 20 00 10
Row Player BT 11 11 11
Ct 12 10 01
What survives IEWDS?
(1) C1<BT; {A1B1)x{A2,B2,C2}
(2) B2<C2; C1<B1; B1<AT; {AT}x{A2,C2}
(3) B2<C2; B1<AT; C2<A2; C1<AT; (A1,A2)
Conclusion: Order of deletion matters!
Iterated admissibility: maximal simultaneous deletion of weakly dominated actions
In example: C1<B1 & B2,C2<A2; B1<A1
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lterated Elimination of Weakly Dominated Strategies

Col Player
A2 B2 C2
Al 20 00 10
Row Player BT 11 11 11
¢l 12 10 01
What survives [EWDS?
(1) C1<BT; {A1B1)x{A2,B2,C2}
(2) B2<C2; C1<BT; B1<AT; {A1}x{A2,C2}
(8) B2<C2; B1<AT; C2<A2; C1<AT; (A1,A2)
Conclusion: Order of deletion matters!
Iterated admissibility: maximal simultaneous deletion of weakly dominated actions

In example: C1<B1 & B2,C2<A2; B1<AT; (A1,A2)
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2nd-Price Auction

I bidders with valuations 0 < v; and v; < vj;q. Bids s; > 0.
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I bidders with valuations 0 < v; and v; < vj;q. Bids s; > 0.

2PA: Highest bid wins and pays 2nd highest bid.
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2nd-Price Auction

I bidders with valuations 0 < v; and v; < vj;q. Bids s; > 0.
2PA: Highest bid wins and pays 2nd highest bid.
Payoffs:

Ui(si, s-j) = v; = max; S; if s; > max; ;.

ui(si,s-j) = m(v, ~s)) if s = max;s;.

ui(si,s-j) = 0if s; < max; s;.
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2nd-Price Auction

I bidders with valuations 0 < v; and v; < vj;q. Bids s; > 0.
2PA: Highest bid wins and pays 2nd highest bid.

Payoffs:
ui(s;, s-j) = max; Sy if s; > max; ;.
u(sy, s-j) = IS S‘( s;) if sj = max; S;.

ui(si,s-j) = 0if s; < max; s;.
Claim: s; = v; is weakly dominant.
(i) Vsi,s-;:(a) s}, vi > maxjs;, (b) maxjs;>si,vi (c) maxs; =V,
s; = viand s] yield same payoff.
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2nd-Price Auction

I bidders with valuations 0 < v; and v; < vj;q. Bids s; > 0.
2PA: Highest bid wins and pays 2nd highest bid.

Payoffs:
ui(s;, s-j) = max; Sy if s; > max; ;.
u(sy, s-j) = IS S‘( s;) if sj = max; S;.

ui(si,s-j) = 0if s; < max; s;.
Claim: s; = v; is weakly dominant.

B / . ! / —
(i) Vsi,s-i:(a) sj,v; > maxiys;, (b) maxjs;>si,v;, (C) maxis; =V,
s; = viand s] yield same payoff.

(i) Vsj,s_j:sj > maxis; > v; = s;: make a strict loss with s/ and no loss with s; = v;.
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2nd-Price Auction

I bidders with valuations 0 < v; and v; < vj;q. Bids s; > 0.
2PA: Highest bid wins and pays 2nd highest bid.

Payoffs:
ui(s;, s-j) = max; Sy if s; > max; ;.
u(sy, s-j) = IS S‘( s;) if sj = max; S;.

ui(si,s-j) = 0if s; < max; s;.
Claim: s; = v; is weakly dominant.
(i) Vsi,s-;:(a) s}, vi > maxjs;, (b) maxjs;>si,vi (c) maxs; =V,
s; = viand s] yield same payoff.
(i) Vsj,s_j:sj > maxis; > v; = s;: make a strict loss with s/ and no loss with s; = v;.
(ili) Vsi,s-j s =v; > s = max;s;: make strictly more with s; = v; (win wp 1, pay same).
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2nd-Price Auction

I bidders with valuations 0 < v; and v; < vj;q. Bids s; > 0.
2PA: Highest bid wins and pays 2nd highest bid.

Payoffs:
ui(s;, s-j) = max; Sy if s; > max; ;.
u(sy, s-j) = IS S‘( s;) if sj = max; S;.

ui(si,s-j) = 0if s; < max; s;.
Claim: s; = v; is weakly dominant.
(i) Vsi,s-;:(a) s}, vi > maxjs;, (b) maxjs;>si,vi (c) maxs; =V,
s; = viand s] yield same payoff.
(i) Vsj,s_j:sj > maxis; > v; = s;: make a strict loss with s/ and no loss with s; = v;.
(ili) Vsi,s-j s =v; > s = max;s;: make strictly more with s; = v; (win wp 1, pay same).
(iv) v; > maxs; > si: make zero with s/; could make strictly positive payoff with s; = v;.
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Overview

6. Rationalisability



Best Response

Definition

e o; € X isabestresponsetoc_; € X_;iff uio;, 6-;) > ui(c,6-) Vo € X;.
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Best Response

Definition

e o; € X isabestresponsetoc_; € X_;iff uio;, 6-;) > ui(c,6-) Vo € X;.

e o; € ¥ is a strict best response to 6_; € £_; iff u;(c;, 6) > U;(c],6-) Vo| 75}
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Best Response

Definition
e o; € X isabestresponsetoc_; € X_;iff uio;, 6-;) > ui(c,6-) Vo € X;.
e o; € ¥ is a strict best response to 6_; € £_; iff u;(c;, 6) > U;(c],6-) Vo| 75}

e G; € X, is never a best response iff A 6_; € X_; : 5; is a best response to 6_;.
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Best Response

Definition

e o; € X isabestresponsetoc_; € X_;iff uio;, 6-;) > ui(c,6-) Vo € X;.

e G; € X, is never a best response iff A 6_; € X_; : 5; is a best response to 6_;.

e o; € ¥ is a strict best response to 6_; € £_; iff u;(c;, 6) > U;(c],6-) Vo| 75}

Best response: cannot do strictly better than.
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Best Response

Definition
e o; € X isabestresponsetoc_; € X_;iff uio;, 6-;) > ui(c,6-) Vo € X;.
e o; € ¥ is a strict best response to 6_; € £_; iff u;(c;, 6) > U;(c],6-) Vo| 75}

e G; € X, is never a best response iff A 6_; € X_; : 5; is a best response to 6_;.

Best response: cannot do strictly better than.
Reasoning: if opponents play o;, then it is o; is a best response. 6_; as beliefs about —i,
conjecture, etc.
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Best Response

Definition
e o; € X isabestresponsetoc_; € X_;iff uio;, 6-;) > ui(c,6-) Vo € X;.
e o; € ¥ is a strict best response to 6_; € £_; iff u;(c;, 6) > U;(c],6-) Vo| 75}

e G; € X, is never a best response iff A 6_; € X_; : 5; is a best response to 6_;.

Best response: cannot do strictly better than.

Reasoning: if opponents play o;, then it is o; is a best response. 6_; as beliefs about —i,
conjecture, etc.

Important: always need to consider mixed strategies!
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Best Response

Col Player

A2 B2

Al 21 0,1

Row Player B1 1,1 11
Cl 01 21

B1is BRto oy iff 65 is 1/2 A2 +1/2 B2.
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Best Response

Col Player

A2 B2

AT 31 01

Row Player B1 2,1 2.1
Cl1 01 31

Even if all pure strategies in support are BR to something, it does not mean that mixed
strategy is.
E.g., 1/2 A1+ 1/2 C1is never a BR to any strategy of Row.

Gongalves (UCL) 10. Strategic Interaction 34



Best Response

If 6; is BR to 6_;, then so are any s; € supp(c;).
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Best Response

If 6; is BR to 6_;, then so are any s; € supp(c;).

Lemma

|f0,‘ . U,‘(G,', (7_,') > U,‘(G,(,G_,') VGI/ 7/6,', then VS,‘ S SUpp(G,'), U,’(S,‘,G_,') = U,'(G,', G_,').
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If 6; is BR to 6_;, then so are any s; € supp(c;).

Lemma

|f6,‘ . U,‘(G,', (7_,‘) > U,‘(G,(,G_,') VGI/ 7/6,', then VS,‘ S SUpp(G,'), U,'(S,‘,G_,') = U,'(G,', G_,').

Proof

Note that, as uj(o;, 6-;) = Es,~o,Uj(Sj, 6-), then uj(o;, 6_;) is in the convex hull of {u;(s;, 6-;), s;
supp(a;)}.
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Proof
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Best Response

If 6; is BR to 6_;, then so are any s; € supp(c;).

Lemma

If G . U,'(G,', (7_,‘) > U,‘(G,(,G_,') VGI/ 7/6,', then VS,’ S Supp(ci), U,‘(S,‘,G_,') = U,'(G,', G_,').

Proof

Note that, as uj(o;, 6-;) = Es,~o,Uj(Sj, 6-), then uj(o;, 6_;) is in the convex hull of {u;(s;, 6-;), s;
supp(a;)}.

As ui(o;,6-) > ui(sj, 6-j)Vs; € supp(c;), then it must be an extreme point of the convex
hull (an interval), and so uj(6;, 6-) = MaXg, csupp(s;) UilSi O-i)-

Let s/ € arg maxs, csupp(s)) Ui(Si»0-1) and s; € supp(c;) but ui(s;, ;) < uj(c;, 6-;). Then,
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Best Response

If 6; is BR to 6_;, then so are any s; € supp(c;).

Lemma

If G . U,'(G,', (7_,‘) > U,‘(G,(,G_,') VGI/ 7/6,', then VS,’ S Supp(ci), U,‘(S,‘,G_,') = U,'(G,', G_,').

Proof

Note that, as uj(o;, 6-;) = Es,~o,Uj(Sj, 6-), then uj(o;, 6_;) is in the convex hull of {u;(s;, 6-;), s;
supp(a;)}.

As ui(o;,6-) > ui(sj, 6-j)Vs; € supp(c;), then it must be an extreme point of the convex
hull (an interval), and so uj(6;, 6-) = MaXg, csupp(s;) UilSi O-i)-

Let s/ € arg maxs, csupp(s)) Ui(Si»0-1) and s; € supp(c;) but ui(s;, ;) < uj(c;, 6-;). Then,
ui(oj, 6-) < oi(sp)ui(si o) + (1 = oi(si)u(sf’, o)
< oi(s)ui(sf’, o-) + (1 = oi(si)uj(sf’, o) = ui(sf’, o)
= j(c;,0-),
a contradiction.
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Best Response

Proposition

(i) A strictly dominated strategy is never a best response.

(i) In finite 2-player games, a pure strategy is never a best-response if and only if it
is strictly dominated.

(i) is immediate. (ii) is an application of separating hyperplane theorem.
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Best Response

Proposition

(i) A strictly dominated strategy is never a best response.

(i) In finite 2-player games, a pure strategy is never a best-response if and only if it
is strictly dominated.

(i) is immediate. (ii) is an application of separating hyperplane theorem.

Will show you another way of proving (ii).

Proof Sketch for (ii)

Suppose o is not strictly dominated. Define f : %; = % sit. (o)) = {gjlui(c, ) >
ui(o, 0))}. Let bi(o)) - argmaxg ey, Ui(o;, ). Define g : T = X st g(o;, ) = by(o)) x (o).
1) Prove that g is nonempty-valued, convex-valued, compact-valued, and UHC.

2) Arguethat 3o € £ : 6 € g(0).

3) Argue that o} is not a never best response.

4) Conclude that in finite 2-player games, a pure strategy is never a best-response if and
only if it is strictly dominated.

(
(
(
(
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Best Response

Proposition

(i) A strictly dominated strategy is never a best response.

(i) In finite 2-player games, a pure strategy is never a best-response if and only if it
is strictly dominated.

Proof for (ii)

That strictly dominated implies NBR is immediate.
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Proposition

(i) A strictly dominated strategy is never a best response.

(i) In finite 2-player games, a pure strategy is never a best-response if and only if it
is strictly dominated.

Proof for (ii)
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Proposition

(i) A strictly dominated strategy is never a best response.

(i) In finite 2-player games, a pure strategy is never a best-response if and only if it
is strictly dominated.

Proof for (ii)
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o f(o;) nonempty . 6;" not strictly dominated (by o).
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Proposition

(i) A strictly dominated strategy is never a best response.

(i) In finite 2-player games, a pure strategy is never a best-response if and only if it
is strictly dominated.
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e f(o;) convex .- uj(c;, -) linear and X; convex.



Best Response

Proposition

(i) A strictly dominated strategy is never a best response.

(i) In finite 2-player games, a pure strategy is never a best-response if and only if it
is strictly dominated.

Proof for (ii)

That strictly dominated implies NBR is immediate. Consider then a strategy that is not
strictly dominated, 67'. WTS it implies that it is a BR to some &7

(a) Definef:Z; = X st f(o;) = {gjlui(c]’, 0) > ui(o;, 5))}-
o f(o;) nonempty . 6;" not strictly dominated (by o).
e f(o;) convex .- uj(c;, -) linear and X; convex.

e f(o)) closed .- uj(c;, -) continuous and f defined by weak inequality.




Best Response

Proposition

(i) A strictly dominated strategy is never a best response.

(i) In finite 2-player games, a pure strategy is never a best-response if and only if it
is strictly dominated.

Proof for (ii)

That strictly dominated implies NBR is immediate. Consider then a strategy that is not
strictly dominated, 6;'. WTS it implies that it is a BR to some cj*.
(a) Definef:Z; = X st f(o;) = {gjlui(c]’, 0) > ui(o;, 5))}-

o f(o;) nonempty . 6;" not strictly dominated (by o).

e f(o;) convex .- uj(c;, -) linear and X; convex.

e f(o)) closed .- uj(c;, -) continuous and f defined by weak inequality.

o f(o)

o;) compact .- f(c;) closed and C ¥; compact.



Best Response

Proposition

(i) A strictly dominated strategy is never a best response.

(i) In finite 2-player games, a pure strategy is never a best-response if and only if it
is strictly dominated.

Proof for (ii)

That strictly dominated implies NBR is immediate. Consider then a strategy that is not
strictly dominated, 6i". WTS it implies that it is a BR to some cj*.
(a) Define f: Z; = & st. f(o)) = {gjlui(c, 5)) > ui(o;, 6))}

f(o;) nonempty .- 6/ not strictly dominated (by o;).

f(o;) convex .- uj(c;, -) linear and E; convex.

f(o)) closed .- uj(o;, ) continuous and f defined by weak inequality.

f(o;) compact .- f(o;) closed and C ¥; compact.

. fUHC:V(o,”,Gj”)n : (cs,-”,csf’) — (0j,0j) and cf € f(o]), 0 < limp—oo u[(cf‘,cf) =

U/'(GF,GJD) = U,‘(G;k,Gj) - U,‘(G/,Gj) Continuity uj.
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Best Response

Proposition

(i) A strictly dominated strategy is never a best response.

(i) In finite 2-player games, a pure strategy is never a best-response if and only if it
is strictly dominated.

Proof for (ii)

That strictly dominated implies NBR is immediate. Consider then a strategy that is not
strictly dominated, 6i". WTS it implies that it is a BR to some cj*.
(a) Definef:Z; = X st f(oy) = {gjlui(c]’, 5) > uj(o;, 5))}-
(b) Letbi(o;) : argmaxg, ¢y, Ui(0;, ;).
e As u; is continuous and linear in ¢;, and ¥; compact, b; is nonempty-valued,
compact-valued, convex-valued, and UHC (by Berge's theorem of the max-
imum).
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Best Response

Proposition

(i) A strictly dominated strategy is never a best response.

(i) In finite 2-player games, a pure strategy is never a best-response if and only if it
is strictly dominated.

Proof for (ii)

That strictly dominated implies NBR is immediate. Consider then a strategy that is not
strictly dominated, o;'. WTS it implies that it is a BR to some cj*.
(a) Definef:Z; = X st f(oy) = {gjlui(c]’, 5) > uj(o;, 5))}-
(b) Letbi(o;) : argmaxg, ¢y, Ui(0;, ;).
(c) Defineg: X = X st g(o;,0)) = bi(g)) x f(o)).
e f,b; nonempty-valued, convex-valued, compact-valued, and UHC — g too.
(Prove it!)
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Best Response

Proposition

(i) A strictly dominated strategy is never a best response.

(i) In finite 2-player games, a pure strategy is never a best-response if and only if it
is strictly dominated.

Proof for (ii)

That strictly dominated implies NBR is immediate. Consider then a strategy that is not
strictly dominated, o;'. WTS it implies that it is a BR to some cj*.
(a) Definef:Z; = X st f(o;) = {gjlui(c]’, 0)) > uj(o;, 5))}-
(b) Letbi(o;) : argmaxg ey, Ui(0;, ;).
(c) Defineg: X = X st g(o;,0) = bi(g)) x f(o)).
(d) By Kakutani's FPThm, 36 € X : (5;,6)) € g(6) = o; € bj(c)) and g; € (o).
® O € b,(G/) - U,‘(G,‘, (5]) > U,'(GI{, Gj) VG,/ € X

e o € f(o;)) = ui(o]", 57) > ui(o;, ).
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Best Response

Proposition

(i) A strictly dominated strategy is never a best response.

(i) In finite 2-player games, a pure strategy is never a best-response if and only if it
is strictly dominated.

Proof for (ii)

That strictly dominated implies NBR is immediate. Consider then a strategy that is not
strictly dominated, 67'. WTS it implies that it is a BR to some &7
(a) Definef:Z; = X st f(o;) = {gjlui(c]’, 0)) > uj(o;, 5))}-
(b) Letbi(o;) : argmaxg ey, Ui(0;, ;).
(c) Defineg: X = X st g(o;,0) = bi(g)) x f(o)).
(d) By Kakutani's FPThm, 36 € X : (5;,6)) € g(6) = o; € bj(c)) and g; € (o).
(e) Conclude o} BR to ;.
e - Ui(o},0) > uj(c;, 0) > ui(c!, o) Vo € X;.
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Rationalisatibility

{ Definition (Bernheim, 1984 Ecta; Pearce, 1984 Ecta)

Given (/,S,u), let £ := 5, for all |
(i) o; € X is k-rationalisable for player i if it is a best response to some o_; €
X jCO (ZJH), where EJH the set of (k — 1)-rationalisable strategies for player
j.
(i) o; € %; is rationalisable for player i if it is k-rationalisable for all k > 1.

Rationalisability as iterated elimination of NBRs.

Why convex hull? Two pure strategies may be BR to some opponents’ strategy profile,
but mixture between them may not and player may be unsure of which of the
surviving strategies to use.
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Rationalisatibility

Lemma

o; rationalisable only if o; survives IESDS.
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Rationalisatibility

Lemma

o; rationalisable only if o; survives IESDS.

Why?
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Rationalisatibility

Lemma

o; rationalisable only if o; survives IESDS.

Why? If strictly dominated, then NBR.

Conclude: set of rationalisable strategies is a subset of set of strategies surviving
IESDS.
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Rationalisatibility

Lemma

o; rationalisable only if o; survives IESDS.

Why? If strictly dominated, then NBR.

Conclude: set of rationalisable strategies is a subset of set of strategies surviving
IESDS.

Lemma

For any finite game, the set of rationalisable strategy profiles is nonempty.

Proof later.
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Rationalisatibility

Lemma

o; rationalisable only if o; survives IESDS.

Why? If strictly dominated, then NBR.

Conclude: set of rationalisable strategies is a subset of set of strategies surviving
IESDS.

{ Lemma

For any finite game, the set of rationalisable strategy profiles is nonempty.

Proof later.

Lemma

Any pure strategy in the support of a rationalisable mixed strategy is rationalisable.
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Rationalisatibility

Lemma

o; rationalisable only if o; survives IESDS.

Why? If strictly dominated, then NBR.
Conclude: set of rationalisable strategies is a subset of set of strategies surviving

IESDS.

{ Lemma
For any finite game, the set of rationalisable strategy profiles is nonempty.

Proof later.

Lemma

Any pure strategy in the support of a rationalisable mixed strategy is rationalisable.

Why?
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Rationalisatibility

Lemma

o; rationalisable only if o; survives IESDS.

Why? If strictly dominated, then NBR.

Conclude: set of rationalisable strategies is a subset of set of strategies surviving
IESDS.

{ Lemma

For any finite game, the set of rationalisable strategy profiles is nonempty.

Proof later.

Lemma

Any pure strategy in the support of a rationalisable mixed strategy is rationalisable.

Why?
Recall that, if o; is BR to o_, then so are any s; € supp(o;).

Gongalves (UCL) 10. Strategic Interaction

43



Rationalisatibility

{ Definition (Pearce, 1984 Ecta)

Given (/,S,u), let £ := 5, for all |
(i) o; € % is k-rationalisable with correlation for player i if it is a best response to
some 6-; € A (XMEJC"{’1), where ZJ.C"H the set of strategies which are (k -
1)-rationalisable with correlation for player j.
(i) o; € X; is rationalisable with correlation for player i if it is k-rationalisable with
correlation for all k > 1.
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Rationalisatibility

{ Definition (Pearce, 1984 Ecta)

Given (/,S,u), let £ := 5, for all |
(i) o; € % is k-rationalisable with correlation for player i if it is a best response to
some 6-; € A (XMEJC"{’1), where ZJ.C"H the set of strategies which are (k -
1)-rationalisable with correlation for player j.
(i) o; € X; is rationalisable with correlation for player i if it is k-rationalisable with
correlation for all k > 1.

If rationalisable without correlation, then rationalisable with correlation?
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Rationalisatibility

{ Definition (Pearce, 1984 Ecta)

Given (/,S,u), let £ := 5, for all |
(i) o; € % is k-rationalisable with correlation for player i if it is a best response to
some 6-; € A (XMEJC"{’1), where ZJ.C"H the set of strategies which are (k -
1)-rationalisable with correlation for player j.
(i) o; € X; is rationalisable with correlation for player i if it is k-rationalisable with
correlation for all k > 1.

If rationalisable without correlation, then rationalisable with correlation?

Is the converse also true?
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Rationalisatibility

Proposition 1 (Pearce 1984 Ecta)

Any pure strategy in the support of a mixed strategy which is rationalisable with corre-
lation is rationalisation with correlation.

Again, recall that, if o; is BR to 6_;, then so are any s; € supp(c;).
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Rationalisatibility

Proposition 1 (Pearce 1984 Ecta)

Any pure strategy in the support of a mixed strategy which is rationalisable with corre-
lation is rationalisation with correlation.

Again, recall that, if o; is BR to 6_;, then so are any s; € supp(c;).

Lemma 3 (Pearce 1984 Ecta)

A strategy is T-rationalisable with correlation if and only if it is not strictly dominated.
Furthermore, the set of strategy profiles which are rationalisable with correlation cor-
responds to the set of strategy profiles surviving IESDS.

Gongalves (UCL) 10. Strategic Interaction

45



Rationalisatibility

Proposition 1 (Pearce 1984 Ecta)

Any pure strategy in the support of a mixed strategy which is rationalisable with corre-
lation is rationalisation with correlation.

Again, recall that, if o; is BR to 6_;, then so are any s; € supp(c;).

Lemma 3 (Pearce 1984 Ecta)

A strategy is T-rationalisable with correlation if and only if it is not strictly dominated.
Furthermore, the set of strategy profiles which are rationalisable with correlation cor-
responds to the set of strategy profiles surviving IESDS.

Why?
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Rationalisatibility

Proposition 1 (Pearce 1984 Ecta)

Any pure strategy in the support of a mixed strategy which is rationalisable with corre-
lation is rationalisation with correlation.

Again, recall that, if o; is BR to 6_;, then so are any s; € supp(c;).

Lemma 3 (Pearce 1984 Ecta)

A strategy is T-rationalisable with correlation if and only if it is not strictly dominated.
Furthermore, the set of strategy profiles which are rationalisable with correlation cor-
responds to the set of strategy profiles surviving IESDS.

Why?
Proof Intuition

Recall that in finite 2-player games, a pure strategy is never a best-response if and only

if it is strictly dominated.
For each player i and k, take —i as player who is choosing in A(S?;k_1).
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Rationalisability

Proposition

supp(o) C S’ and o; weakly dominates o;.

Jo_; € int(A(A-) st. §' C argmaxg e Uj(s;,0-) if and only if #o;,0] € A(4)

Gongalves (UCL) 10. Strategic Interaction

46



Rationalisability

{ Proposition

supp(o) C S’ and o; weakly dominates o;.

Jo_; € int(A(A-) st. §' C argmaxg e Uj(s;,0-) if and only if #o;,0] € A(4)

{ Corollary

o; is not weakly dominated if and only if it is a best response to some 6_; € A(A-)).
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Rationalisability

{ Proposition

supp(o) C S’ and o; weakly dominates o;.

Jo_; € int(A(A-) st. §' C argmaxg e Uj(s;,0-) if and only if #o;,0] € A(4)

{ Corollary

o; is not weakly dominated if and only if it is a best response to some 6_; € A(A-)).

Problem set question.
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Second-Price Auction

I bidders with valuations 0 < v; and v; < vj44. Bids s; > 0.
2PA: Highest bid wins and pays 2nd highest bid.
Payoffs:

Ui(si,s-j) = v; = max; S; if s; > max; s;.

ui(si,s-j) = ﬁ(vi ~s7) if s; = max; s;.

ui(si,s-j) = 0if s; < max; s;.

Claim: Every strategy is rationalisable.
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A Game

In a piece of paper, please write any number in [0, 100].
You have 2 minutes to think about it.
You win if you get the closest to 2/3 of the class average.

You should not disclose any information to your colleages.
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Overview

7. Level-k



Level-k

WT incorporate reasoning mistakes.
Level-k
Stahl (1993 GEB), Stahl and Wilson (1995 GEB), Nagel (1995 AER)
Consider dominance-solvable game.
Fix 60 € A(S)).
A level-k player chooses a best response to k — 1 level players:
sk = argmaxg,cs, Ui(si, 857 7).
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Bosch-Domenech, Montalvo, Nagel,

&

Satorra (2002 AER). Guess 2/3 of

Average.

Peaks around 33 = BR(50), 22 = BR(33),

and the dominance solution O.
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Level-k

1. Lab experiments (1-5) 2. Classroom experiments (6,7)
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Level-k

WT incorporate reasoning mistakes.

Level-k
Stahl (1993 GEB), Stahl and Wilson (1995 GEB), Nagel (1995 AER)
Consider dominance-solvable game.
Fix 69 € A(S)).

A level-k player chooses a best response to k — 1 level players:

Kk _ k=1
S; = argmaxg,es, Ui(Si, s5; ).
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Level-k

WT incorporate reasoning mistakes.

Level-k
Stahl (1993 GEB), Stahl and Wilson (1995 GEB), Nagel (1995 AER)
Consider dominance-solvable game.
Fix 69 € A(S)).

A level-k player chooses a best response to k — 1 level players:

Kk _ k=1
S; = argmaxg,es, Ui(Si, s5; ).

Cognitive Hierarchies
Camerer, Ho, & Chong (2004 QJE)

Distribution P € A(Np) s.t., level-k best-responds to distribution of levels £ < k given
by P(¢l€ < K).

P exogenous; data fitting device.
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Level-k

WT incorporate reasoning mistakes.

Level-k
Stahl (1993 GEB), Stahl and Wilson (1995 GEB), Nagel (1995 AER)
Consider dominance-solvable game.
Fix 69 € A(S)).

A level-k player chooses a best response to k — 1 level players:

Kk _ k-1
S; = argmaxg,es, Ui(Si, s5; ).

Cognitive Hierarchies
Camerer, Ho, & Chong (2004 QJE)

Distribution P € A(Np) s.t., level-k best-responds to distribution of levels £ < k given
by P(¢l€ < K).

P exogenous; data fitting device.
Endogenous Depth of Reasoning
Alaoui & Penta (2016 RES)
Endogenous level-k, resulting from cost-benefit analysis of reasoning further'.
Level-0 exogenous; non-equilibrium.
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Level-k

WT incorporate reasoning mistakes.

Level-k

Cognitive Hierarchies

Endogenous Depth of Reasoning

Issues

(1) as if people have very unrealistic beliefs.

(2) not well defined for arbitrary games.

(3) “level” unstable even across dominance-solvable games.
(4)

4) individual's reasoning seems to depend on payoffs: take “more steps” of IESDS the
higher the stakes.

(5) individual's reasoning seems to react to relative incentives smoothly.

Possible ways forward: more later
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Overview

8. More



More

- Miscellanea:
Rationalisability with preferences over lotteries: Weinstein (2016 Ecta)
Potential games (a very useful class of games): Monderer & Shapley (1996 GEB)
p-Best response: Tercieux (2006 JET)
Chess is Dominance-solvable in 2 steps (!) (Ewerhart, 2000 GEB)

- Applications of Level-k: to macro (Farhi & Werning, 2019 AER); to mechanism design
(Kneeland, 2022 JET).

- Rationalisability in networks: Lipnowski & Sadler (2019 Ecta)
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