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Overview

Before: Choice theory. Individual choice, one DM.

Now: Game theory. Multiple agents.
Penalty kicker shoots left or right; model their behaviour as maximising prob. of
scoring a goal.

Goal-keeper goes left or right; model their behaviour as maximising prob.
preventing a goal from being scored.

Whether goal is scored or not depends on both their actions.

Goal: understand mechanisms, rationalise behaviour, make predictions.
What if the kicker is better with the left foot?
Would the goalkeeper have done their research on the opponent?
Is it a high stakes game?
How does it depend on experience? What if the wind/sun/etc. is going in a
particular way?
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Overview

Applications abound:
- Investment decisions: buy/not buy stock; value of stock depends on others’

decisions; speculative attacks.
- Politics: designing voting rules and the agenda.
- Firm competition and industrial organisation: pricing strategies by firms are

analysed by game theoretic models to determine collusion.
- Auction theory (branch of game theory): spectrum auctions.
- Public economics: procurement policies.
- Evolutionary game theory: cancer treatment research.
- School choice: students choose strategically; other students’ choices affect their

outcome.
- Organisational economics: delegation of decision power within a firm or

organisation.
- Education economics: outcomes and degree of competition in grading schemes.

-
...
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Normal-Form Games

A normal-form game is a tuple Γ = ⟨I,S, u⟩ where
• Set of Players: i ∈ I.
• Strategy Space: si ∈ Si

• Strategy profile: s ∈ S := ×i∈ISi; s–i ∈ S–i := ×j∈I:j̸=iSj.
• Payoff Function: u = {ui, i ∈ I}, ui : S → R.

Interpretation: players have preferences over outcomes and each strategy profile s pins
down an outcome (potentially the same outcome).

More on this later with extensive-form games.

Write ui(s) = ui(si, s–i).

Y is mutual knowledge = all players know Y

Y is common knowledge = all players know Y , all players know that all players know Y ,
all players know that all players know that all players know Y , etc.

Game of complete information: all aspects of the game are common knowledge.

Assume that all games are of complete information; later we’ll discuss games of
incomplete information.

Gonçalves (UCL) 10. Strategic Interaction 3



Normal-Form Games

A normal-form game is a tuple Γ = ⟨I,S, u⟩ where
• Set of Players: i ∈ I.
• Strategy Space: si ∈ Si

• Strategy profile: s ∈ S := ×i∈ISi; s–i ∈ S–i := ×j∈I:j̸=iSj.
• Payoff Function: u = {ui, i ∈ I}, ui : S → R.

Interpretation: players have preferences over outcomes and each strategy profile s pins
down an outcome (potentially the same outcome).

More on this later with extensive-form games.

Write ui(s) = ui(si, s–i).

Y is mutual knowledge = all players know Y

Y is common knowledge = all players know Y , all players know that all players know Y ,
all players know that all players know that all players know Y , etc.

Game of complete information: all aspects of the game are common knowledge.

Assume that all games are of complete information; later we’ll discuss games of
incomplete information.

Gonçalves (UCL) 10. Strategic Interaction 3



Normal-Form Games

Strategies
• Pure strategy si ∈ Si.
• Mixed strategy σi ∈ Σi := ∆(Si); σ ∈ Σ := ×i∈I∆(Si); σ–i ∈ Σ–i := ×j∈I:j̸=i∆(Sj).

• ATT! Σ := ×i∈I∆(Si) ̸= ∆(×i∈ISi). Why? Example?
• Write σ(s) for

∏
i∈I σi(si).

• Expected payoff ui : Σ → R (slight abuse of notation)
• ui(σ) := Eσ[ui] =

∑
s∈S

σ(s)ui(s) =
∑
s∈S

∏
j∈I

σj(sj)u(s).

Interpretation: ui as Bernoulli index; players EU maximisers.
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Solution Concepts

Solution concept: Takes game Γ and makes predictions regarding outcomes.
Singleton-valued Γ 7→ S.
Set-valued (what can and cannot happen) Γ 7→ 2S.
(Different from multiplicity.)

Deterministic vs Stochastic prediction: considering S or Σ or ∆(S).

Desired properties:
Existence: something is predicted.
Uniqueness: prediction is sharp. (desired?)
Continuity of the prediction?

For simplicity, assume game is finite, |S| < ∞.

Results generalise beyond finite games, but require some care in definitions and,
sometimes, restrictions on Si and ui (e.g., compactness, continuity, etc.).
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Modified Split or Steal (Golden Balls, ITV 2007-09)

Col Player
Split Steal

Row Player Split J/2, J/2 0, J
Steal J, 0 J/4, J/4

Players? Strategies?

Payoffs?

Prediction?
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Strict Dominance

Definition

Fix Γ = ⟨I,S, u⟩.
(i) Strategy σi ∈ Σi of player i strictly dominates strategy σ

′
i ∈ Σi iff ui(σi,σ–i) >

ui(σ′
i ,σ–i) ∀σ–i ∈ Σ–i.

(ii) Strategy σi ∈ Σi of player i is strictly dominant iff it strictly dominates every σ
′
i ∈

Σi \ {σi}.

(iii) Strategy σi ∈ Σi of player i is strictly dominated by strategy σ
′
i ∈ Σi iff ui(σi,σ–i) <

ui(σ′
i ,σ–i) ∀σ–i ∈ Σ–i.

Idea: strong predictions
No one chooses strictly dominated strategies as there is something else that is
strictly better.

If a strategy is strictly dominant, all others are strictly dominated, the player better
choose the strictly dominant one.

Strict dominance is ordinal concept: doesn’t matter if dominates by a little or a lot.
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Modified Split or Steal (Golden Balls, ITV 2007-09)

Col Player
Split Steal

Row Player Split J/2, J/2 0, J
Steal J, 0 J/4, J/4

Note: Dominance relation between strategies ̸= Pareto dominance of outcomes
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Strict Dominance

Definition

Fix Γ = ⟨I,S, u⟩.
(i) Strategy σi ∈ Σi of player i strictly dominates strategy σ

′
i ∈ Σi iff ui(σi,σ–i) >

ui(σ′
i ,σ–i) ∀σ–i ∈ Σ–i.
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i ∈
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(iii) Strategy σi ∈ Σi of player i is strictly dominated by strategy σ
′
i ∈ Σi iff ui(σi,σ–i) <

ui(σ′
i ,σ–i) ∀σ–i ∈ Σ–i.

Define strict dominance relation for player i.
Is it reflexive? Complete? Transitive? Does it induce a lattice?

Is there always a dominant strategy? Can there be more than one dominant strategy?

Lemma

There can be at most one strictly dominant strategy for each player.

(Why?)
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Strictly Dominant Strategy

Lemma

If σi is strictly dominant, then ∃si ∈ Si : σi(si) = 1.

Proof

Suppose not. Then ui(σi,σ–i) > ui(si,σ–i)∀si ∈ supp(σi).
But this implies that ui(σi,σ–i) =

∑
si σi(si)ui(σi,σ–i) >

∑
si σi(si)ui(si,σ–i) = ui(σi,σ–i), a

contradiction. □

In other words, only pure strategies are strictly dominant.

Gonçalves (UCL) 10. Strategic Interaction 10



Strictly Dominant Strategy

Lemma

If σi is strictly dominant, then ∃si ∈ Si : σi(si) = 1.

Proof

Suppose not. Then ui(σi,σ–i) > ui(si,σ–i)∀si ∈ supp(σi).

But this implies that ui(σi,σ–i) =
∑

si σi(si)ui(σi,σ–i) >
∑

si σi(si)ui(si,σ–i) = ui(σi,σ–i), a
contradiction. □

In other words, only pure strategies are strictly dominant.

Gonçalves (UCL) 10. Strategic Interaction 10



Strictly Dominant Strategy

Lemma

If σi is strictly dominant, then ∃si ∈ Si : σi(si) = 1.

Proof

Suppose not. Then ui(σi,σ–i) > ui(si,σ–i)∀si ∈ supp(σi).
But this implies that ui(σi,σ–i) =

∑
si σi(si)ui(σi,σ–i) >

∑
si σi(si)ui(si,σ–i) = ui(σi,σ–i), a

contradiction. □

In other words, only pure strategies are strictly dominant.

Gonçalves (UCL) 10. Strategic Interaction 10



Strictly Dominant Strategy

Lemma

If σi is strictly dominant, then ∃si ∈ Si : σi(si) = 1.

Proof

Suppose not. Then ui(σi,σ–i) > ui(si,σ–i)∀si ∈ supp(σi).
But this implies that ui(σi,σ–i) =

∑
si σi(si)ui(σi,σ–i) >

∑
si σi(si)ui(si,σ–i) = ui(σi,σ–i), a

contradiction. □

In other words, only pure strategies are strictly dominant.

Gonçalves (UCL) 10. Strategic Interaction 10



Strictly Dominant Strategy

Enough to consider pure strategies to assess if si is strictly dominant?

Lemma

si is strictly dominant if and only if ui(si, s–i) > ui(s′i , s–i) ∀s
′
i ∈ Si \ {si}, s–i ∈ S–i.

Yes, it is enough to consider pure strategies to assess if si is strictly dominant.

Proof

=⇒ : By definition.
⇐= :

ui(si, s–i) > ui(s′i , s–i) ∀s′i ∈ Si \ {si}, s–i ∈ S–i

=⇒ ui(si,σ–i) =
∑

s–i∈S–i
σ–i(s–i)ui(si, s–i) >

∑
s–i∈S–i

σ–i(s–i)ui(s′i , s–i) = ui(s′i ,σ–i)
∀s′i ∈ Si \ {si},σ–i ∈ Σ–i

=⇒ ui(si,σ–i) >
∑

s′i ∈Si
σi(s′i )ui(s

′
i , s–i) = ui(σi,σ–i) ∀σi ∈ Σi \ {δsi },σ–i ∈ Σ–i □
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Strictly Dominated Strategy

Enough to consider opponents’ pure strategies to assess if si is strictly dominated?

Lemma

σi is strictly dominated by σ
′
i if and only if ui(σi, s–i) < ui(σ′

i , s–i) for all s–i ∈ S–i.

Yes, it suffices to check opponents’ pure strategies to assess if strategy strictly
dominated.

Often say σi is strictly dominated (you’ll need to explain what strictly dominates σi).

Proof

=⇒ : By definition.
⇐= :

σi is strictly dominated by σ
′
i =⇒ ui(σi, s–i) < ui(σ′

i , s–i) ∀s–i ∈ S–i

=⇒ ui(σi,σ–i) =
∑

s–i∈S–i
σ–i(s–i)ui(σi, s–i) <

∑
s–i∈S–i

σ–i(s–i)ui(σ′
i , s–i) = ui(σ′

i ,σ–i)
∀σ–i ∈ Σ–i. □
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Strictly Dominated Strategy

Col Player
L R

Row Player
T 0,0 3,2
M 1,4 1,1
B 3,0 0,1

Which strategy is strictly dominated?

No pure strategy of Player 1 strictly dominates another pure strategy.

However: 1/2 T + 1/2 B strictly dominates M!

Moral of the story: you may need to consider mixed strategies to assess which
strategies are strictly dominated

I.e., it suffices to check opponents’ pure strategies to assess if strategy strictly
dominated, but do need to check own mixed strategies.
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I.e., it suffices to check opponents’ pure strategies to assess if strategy strictly
dominated, but do need to check own mixed strategies.
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Strictly Dominated Strategy

If mixed strategy is stricty dominated, is there a pure strategy which is strictly
dominated?

Not necessarily...

Col Player
L R

Row Player
T -4,0 3,2
M 1,1 1,1
B 3,4 -4,1

P1 has no strictly dominated pure strategy, but 1/2 T + 1/2 B is strictly dominated by M.
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Strictly Dominated Strategy

Lemma

If si is strictly dominated, then any σi ∈ Σi : σi(si) > 0 is strictly dominated.

Proof

∃σ
′
i : si strictly dominated by σ

′
i .

Define σ
′′
i : σ

′′
i (s

′
i ) := σi(si)σ′

i (s
′
i ) + 1{s′i ̸= si}σi(s′i ). WTS σ

′′
i ∈ Σi.

(i) σ
′′
i ≥ 0 and (ii)

∑
s′i

σ
′′
i (s

′
i ) = σi(si)

∑
s′i

σ
′
i (s

′
i ) +

∑
s′i ̸=si

σi(s′i ) = σi(si) + 1 – σi(si) = 1.
Then, ∀σ–i ∈ Σ–i,

ui(σi,σ–i) = σi(si)u(si,σ–i) +
∑
s′i ̸=si

σi(s
′
i )ui(s

′
i ,σ–i)

< σi(si)u(σ
′
i ,σ–i) +

∑
s′i ̸=si

σi(s
′
i )ui(s

′
i ,σ–i)

=
∑
s′i

[
σi(si)σ

′
i (s

′
i ) + 1{s′i ̸= si}σi(s

′
i )
]
ui(s

′
i ,σ–i) = ui(σ

′′
i ,σ–i) □
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Strictly Dominated Strategy

Lemma

If si is strictly dominated, then any σi ∈ Σi : σi(si) > 0 is strictly dominated.

A mixed strategy involving a strictly dominated strategy is strictly dominated.

Can also show the more general but arguably less useful property:

Lemma

σi is strictly dominated ⇐⇒ ∀α ∈ (0, 1],∀σ
′
i ∈ Σi, ασi + (1 – α)σ′

i is strictly dominated.
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Overview

1. Strategic Interaction

2. Normal-Form Games

3. Strict Dominance

4. Iterated Elimination of Strictly Dominated Strategies (IESDS)

5. Weak Dominance

6. Rationalisability

7. Level-k

8. More



Iterated Elimination of Strictly Dominated Strategies (IESDS)

Motivation: ‘Common knowledge of rationality’ (CKR)

CK that players maximise payoffs.

Payoff maximisation = means to describe behaviour =⇒ CKR = CK of how people
behave.

Know strictly dominated strategies not chosen. Know that everyone knows that strictly
dominated strategies not chosen =⇒ can ignore strictly dominated strategies.

Iterate reasoning...

Gonçalves (UCL) 10. Strategic Interaction 17



Iterated Elimination of Strictly Dominated Strategies (IESDS)

Definition

Given ⟨I,S, u⟩, S∞ ⊂ S survives IESDS iff S∞ = ×i∈IS∞i and ∃(Sk
i )k≥0 s.t.

(i) S0
i := Si and S∞i = ∩k≥0S

k
i ;

(ii) for k ≥ 1, Sk
i ⊆ Sk–1

i ;

(iii) for k ≥ 1, si ∈ Sk–1
i \ Sk

i is strictly dominated in the restricted game ⟨I,×jSk–1
j , u⟩;

(iv) No si ∈ S∞i is strictly dominated in the game ⟨I,S∞, u⟩.

Remark

In finite games (|S| < ∞) order of elimination doesn’t matter: always get the same limit
set S∞.

Beyond finite games, sufficient compact Si and usc ui; in general, things can go awry
(see Dufwenberg & Stegeman 2004 Ecta)
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Iterated Elimination of Strictly Dominated Strategies (IESDS)

Consider IESDS for game with mixed strategies:

Definition

Given ⟨I,Σ, u⟩, Σ
∞ ⊂ Σ survives IESDS iff Σ

∞ = ×i∈IΣ
∞
i and ∃(Σk

i )k≥0 s.t.
(i) Σ

0
i := Σi and Σ

∞
i = ∩k≥0Σ

k
i ;

(ii) for k ≥ 1, Σ
k
i ⊆ Σ

k–1
i ;

(iii) for k ≥ 1, σi ∈ Σ
k–1
i \ Σ

k
i is strictly dominated in the restricted game ⟨I,×jΣ

k–1
j , u⟩;

(iv) No σi ∈ Σ
∞
i is strictly dominated in the game ⟨I,Σ∞, u⟩.

Lemma

σi ∈ Σ
∞
i =⇒ supp(σi) ⊆ S∞i .

Why?
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Iterated Elimination of Strictly Dominated Strategies (IESDS)

Col Player
L R

Row Player
T 3,1 0,1
M 0,1 3,1
B 2,1 2,1

No pure strategies are strictly dominated: S = S∞.

Yet, 1/5 T + 1/5 M is strictly dominated by B.

Conclusion: S∞i = supp(Σ∞
i ) but ∆(S∞i ) ̸= Σ

∞
i .
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Iterated Elimination of Strictly Dominated Strategies (IESDS)

Definition

Γ = ⟨I,S, u⟩ is dominance-solvable if |S∞| = 1, i.e., a single strategy profile survives
IESDS.

A very strong prediction.

Corollary

|S∞| = 1 ⇐⇒ |Σ∞| = 1.
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Example: Provision of Public Goods

Example

N teammembers decide howmuch time to allocate to group work vs. individual work.

The quality of the outcome of the shared task depends on the (geometric) avg. ef-
fort/time spent of the team:

∏
j sj

1/N.

The quality of the outcome of the individual task only depends on the individual time
spent: 1 – si.

Get paid α ∈ (1,N) for the quality of the shared task and 1 for the individual task.

Goal: maximise payment.

Strategy space Si := [0, 1].

Payoffs: ui(s) = α(
∏

j s
1/N
j ) + 1 – si.
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Example: Provision of Public Goods

Example

Si := [0, 1]; s̄i :=
∏

j̸=i sj ui(s) = αs1/Ni s̄1/Ni + 1 – si.

Claim: there is no strictly dominant strategy.
For any si > 0, and

∏
j̸=i sj = 0, ui(si, s–i) = 1 – si < 1 = ui(0, s–i).

Hence, ∀si > 0, si cannot be strictly dominant.
Moreover, for si = 0 and

∏
j̸=i sj = 1, ui(0, s–i) = 1 < α = ui(1, s–i).

Hence, si = 0 cannot be strictly dominant.
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Example: Provision of Public Goods

Example

Si := [0, 1]; s̄i :=
∏

j̸=i sj ui(s) = αs1/Ni s̄1/Ni + 1 – si.

Claim: the game is dominance solvable.

Let s(1) := (α/N)N/(N–1). WTS any si > s(1) is strictly dominated by s(1). ∀s–i.

ui(s(1) + e, s–i) – ui(s(1), s–i)

=
(

α[s(1) + e]1/Ns̄1/Ni + 1 – s(1) – e
)
–
(

α[s(1)]
1/Ns̄1/Ni + 1 – s(1)

)
= αs̄1/Ni

(
[s(1) + e]1/N – [s(1)]

1/N
)
– e

< αs̄1/Ni
1
N
[s(1)]

1/N–1e – e

=
(
s̄1/Ni

α

N
[s(1)]

–(N–1)/N – 1
)
e

≤
(

α

N
[s(1)]

–(N–1)/N – 1
)
e < 0.
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Example: Provision of Public Goods

Example

Si := [0, 1]; s̄i :=
∏

j̸=i sj ui(s) = αs1/Ni s̄1/Ni + 1 – si.

Claim: the game is dominance solvable.
Shown: for any k, any si > s(k+1) is iteratedly strictly dominated by

s(k+1) := s(k)(α/N)N/(N–1) given sj ∈ [0, s(k)] =⇒ s̄i ∈ [0, (s(k))
N–1].

With s(0) := 1, defines decreasing sequence: s(k) := s(k–1)(α/N)N/(N–1) = (α/N)kN/(N–1)

and limk→∞ s(k) = 0.
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Overview

1. Strategic Interaction

2. Normal-Form Games

3. Strict Dominance

4. Iterated Elimination of Strictly Dominated Strategies (IESDS)

5. Weak Dominance
– 2nd-Price Auction

6. Rationalisability

7. Level-k

8. More



Original Split or Steal (Golden Balls, ITV 2007-09)

Col Player
Split Steal

Row Player Split J/2, J/2 0, J
Steal J, 0 0, 0

No strictly dominant strategies.

Prediction?
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Weak Dominance

Definition

Fix Γ = ⟨I,S, u⟩.
(i) Strategy σi ∈ Σi of player i is weakly dominated by strategy σ

′
i ∈ Σi iff ui(σi,σ–i) ≤

ui(σ′
i ,σ–i) ∀σ–i ∈ Σ–i and ∃σ

′
–i ∈ Σ–i : ui(σi,σ′

–i) < ui(σ′
i ,σ

′
–i).

(ii) Strategy σi ∈ Σi of player i weakly dominant iff it weakly dominates every other
strategy σ

′
i .

Define weak dominance relation for player i.
Is it reflexive? Complete? Transitive? Does it induce a lattice?

Strict dominance implies weak dominance, but not the other way around.

Idea: Iterated elimination of weakly dominated strategies!

Why strict inequality? Don’t want to eliminate everything in one go!

Is there always a weakly dominant strategy? Can there be more than one dominant
strategy?
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Weak Dominance

Lemma

(i) There can be at most one weakly dominant strategy for each player.

(ii) If σi is weakly dominant, then ∃si : σi(si) = 1.
(Weakly dominant strategies need to be degenerate.)

(iii) si is weakly dominant if and only if ∀s′i ̸= si, ui(si, s–i) ≥ ui(s′i , s–i), ∀s–i ∈ S–i and
∃s′–i ∈ S–i : ui(si, s′–i) > ui(s′i , s

′
–i).

(Suffices to consider pure strategies in characterising weakly dominant strate-
gies.)

(iv) σi is weakly dominated by σ
′
i if and only if ui(σi, s–i) ≤ ui(σ′

i , s–i) ∀s–i ∈ S–i and
∃s′–i ∈ S–i : ui(σi, s–i) < ui(σ′

i , s–i).
(Suffices to consider opponents’ pure strategies in characterising weakly dom-
inated strategies.)

(v) If si is weakly dominated, then any σi ∈ Σi : σi(si) > 0 is weakly dominated.
(Mixed strategies involvingweakly dominated strategies areweakly dominated.)

(vi) σi is weakly dominated ⇐⇒ ∀α ∈ (0, 1],∀σ
′
i ∈ Σi, ασi + (1 – α)σ′

i is weakly
dominated. (Bis.)
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Iterated Elimination of Weakly Dominated Strategies

Col Player
A2 B2 C2

Row Player
A1 2,0 0,0 1,0
B1 1,1 1,1 1,1
C1 1,2 1,0 0,1

What survives IEWDS?

(1) C1<B1; {A1,B1}x{A2,B2,C2}

(2) B2<C2; C1<B1; B1<A1; {A1}x{A2,C2}

(3) B2<C2; B1<A1; C2<A2; C1<A1; (A1,A2)

Conclusion: Order of deletion matters!

Iterated admissibility: maximal simultaneous deletion of weakly dominated actions

In example: C1<B1 & B2,C2<A2; B1<A1; (A1,A2)
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2nd-Price Auction

I bidders with valuations 0 ≤ vi and vi ≤ vi+1. Bids si ≥ 0.

2PA: Highest bid wins and pays 2nd highest bid.

Payoffs:
ui(si, s–i) = vi – maxj̸=i sj if si > maxj̸=i sj.
ui(si, s–i) = 1

|j:sj=si | (vi – si) if si = maxj̸=i sj.

ui(si, s–i) = 0 if si < maxj̸=i sj.

Claim: si = vi is weakly dominant.
(i) ∀s′i , s–i : (a) s

′
i , vi > maxj̸=i sj, (b) maxj̸=i sj > s′i , vi, (c) maxj̸=i sj = vi,

si = vi and s′i yield same payoff.
(ii) ∀s′i , s–i : s

′
i ≥ maxj̸=i sj > vi = si: make a strict loss with s′i and no loss with si = vi.

(iii) ∀s′i , s–i : si = vi > s′i = maxj̸=i sj: make strictly more with si = vi (win wp 1, pay same).
(iv) vi > maxj̸=i sj > s′i : make zero with s′i ; could make strictly positive payoff with si = vi.
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|j:sj=si | (vi – si) if si = maxj̸=i sj.

ui(si, s–i) = 0 if si < maxj̸=i sj.

Claim: si = vi is weakly dominant.
(i) ∀s′i , s–i : (a) s

′
i , vi > maxj̸=i sj, (b) maxj̸=i sj > s′i , vi, (c) maxj̸=i sj = vi,

si = vi and s′i yield same payoff.

(ii) ∀s′i , s–i : s
′
i ≥ maxj̸=i sj > vi = si: make a strict loss with s′i and no loss with si = vi.

(iii) ∀s′i , s–i : si = vi > s′i = maxj̸=i sj: make strictly more with si = vi (win wp 1, pay same).
(iv) vi > maxj̸=i sj > s′i : make zero with s′i ; could make strictly positive payoff with si = vi.
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Overview

1. Strategic Interaction

2. Normal-Form Games

3. Strict Dominance

4. Iterated Elimination of Strictly Dominated Strategies (IESDS)

5. Weak Dominance

6. Rationalisability

7. Level-k

8. More



Best Response

Definition

• σi ∈ Σi is a best response to σ–i ∈ Σ–i iff ui(σi,σ–i) ≥ ui(σ′
i ,σ–i) ∀σ

′
i ∈ Σi.

• σi ∈ Σi is a strict best response to σ–i ∈ Σ–i iff ui(σi,σ–i) > ui(σ′
i ,σ–i) ∀σ

′
i ̸= σi.

• σi ∈ Σi is never a best response iff ∄ σ–i ∈ Σ–i : σi is a best response to σ–i.

Best response: cannot do strictly better than.

Reasoning: if opponents play σ–i, then it is σi is a best response. σ–i as beliefs about –i,
conjecture, etc.

Important: always need to consider mixed strategies!
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Best Response

Col Player
A2 B2

Row Player
A1 2,1 0,1
B1 1,1 1,1
C1 0,1 2,1

B1 is BR to σ2 iff σ2 is 1/2 A2 + 1/2 B2.
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Best Response

Col Player
A2 B2

Row Player
A1 3,1 0,1
B1 2,1 2,1
C1 0,1 3,1

Even if all pure strategies in support are BR to something, it does not mean that mixed
strategy is.

E.g., 1/2 A1 + 1/2 C1 is never a BR to any strategy of Row.

Gonçalves (UCL) 10. Strategic Interaction 34



Best Response

If σi is BR to σ–i, then so are any si ∈ supp(σi).

Lemma

If σi : ui(σi,σ–i) ≥ ui(σ′
i ,σ–i)∀σ

′
i ̸= σi, then ∀si ∈ supp(σi), ui(si,σ–i) = ui(σi,σ–i).

Proof

Note that, as ui(σi,σ–i) = Esi∼σiui(si,σ–i), then ui(σi,σ–i) is in the convex hull of {ui(si,σ–i), si ∈
supp(σi)}.

As ui(σi,σ–i) ≥ ui(si,σ–i)∀si ∈ supp(σi), then it must be an extreme point of the convex
hull (an interval), and so ui(σi,σ–i) = maxsi∈supp(σi) ui(si,σ–i).

Let s∗i ∈ argmaxsi∈supp(σi) ui(si,σ–i) and si ∈ supp(σi) but ui(si,σi) < ui(σi,σ–i). Then,

ui(σi,σ–i) ≤ σi(si)ui(si,σ–i) + (1 – σi(si))ui(s
∗
i ,σ–i)

< σi(si)ui(s
∗
i ,σ–i) + (1 – σi(si))ui(s

∗
i ,σ–i) = ui(s

∗
i ,σ–i)

= ui(σi,σ–i),
a contradiction.

Gonçalves (UCL) 10. Strategic Interaction 35



Best Response

If σi is BR to σ–i, then so are any si ∈ supp(σi).

Lemma

If σi : ui(σi,σ–i) ≥ ui(σ′
i ,σ–i)∀σ

′
i ̸= σi, then ∀si ∈ supp(σi), ui(si,σ–i) = ui(σi,σ–i).

Proof

Note that, as ui(σi,σ–i) = Esi∼σiui(si,σ–i), then ui(σi,σ–i) is in the convex hull of {ui(si,σ–i), si ∈
supp(σi)}.

As ui(σi,σ–i) ≥ ui(si,σ–i)∀si ∈ supp(σi), then it must be an extreme point of the convex
hull (an interval), and so ui(σi,σ–i) = maxsi∈supp(σi) ui(si,σ–i).

Let s∗i ∈ argmaxsi∈supp(σi) ui(si,σ–i) and si ∈ supp(σi) but ui(si,σi) < ui(σi,σ–i). Then,

ui(σi,σ–i) ≤ σi(si)ui(si,σ–i) + (1 – σi(si))ui(s
∗
i ,σ–i)

< σi(si)ui(s
∗
i ,σ–i) + (1 – σi(si))ui(s

∗
i ,σ–i) = ui(s

∗
i ,σ–i)

= ui(σi,σ–i),
a contradiction.

Gonçalves (UCL) 10. Strategic Interaction 35



Best Response

If σi is BR to σ–i, then so are any si ∈ supp(σi).

Lemma

If σi : ui(σi,σ–i) ≥ ui(σ′
i ,σ–i)∀σ

′
i ̸= σi, then ∀si ∈ supp(σi), ui(si,σ–i) = ui(σi,σ–i).

Proof

Note that, as ui(σi,σ–i) = Esi∼σiui(si,σ–i), then ui(σi,σ–i) is in the convex hull of {ui(si,σ–i), si ∈
supp(σi)}.

As ui(σi,σ–i) ≥ ui(si,σ–i)∀si ∈ supp(σi), then it must be an extreme point of the convex
hull (an interval), and so ui(σi,σ–i) = maxsi∈supp(σi) ui(si,σ–i).

Let s∗i ∈ argmaxsi∈supp(σi) ui(si,σ–i) and si ∈ supp(σi) but ui(si,σi) < ui(σi,σ–i). Then,

ui(σi,σ–i) ≤ σi(si)ui(si,σ–i) + (1 – σi(si))ui(s
∗
i ,σ–i)

< σi(si)ui(s
∗
i ,σ–i) + (1 – σi(si))ui(s

∗
i ,σ–i) = ui(s

∗
i ,σ–i)

= ui(σi,σ–i),
a contradiction.

Gonçalves (UCL) 10. Strategic Interaction 35



Best Response

If σi is BR to σ–i, then so are any si ∈ supp(σi).

Lemma

If σi : ui(σi,σ–i) ≥ ui(σ′
i ,σ–i)∀σ

′
i ̸= σi, then ∀si ∈ supp(σi), ui(si,σ–i) = ui(σi,σ–i).

Proof

Note that, as ui(σi,σ–i) = Esi∼σiui(si,σ–i), then ui(σi,σ–i) is in the convex hull of {ui(si,σ–i), si ∈
supp(σi)}.

As ui(σi,σ–i) ≥ ui(si,σ–i)∀si ∈ supp(σi), then it must be an extreme point of the convex
hull (an interval), and so ui(σi,σ–i) = maxsi∈supp(σi) ui(si,σ–i).

Let s∗i ∈ argmaxsi∈supp(σi) ui(si,σ–i) and si ∈ supp(σi) but ui(si,σi) < ui(σi,σ–i). Then,

ui(σi,σ–i) ≤ σi(si)ui(si,σ–i) + (1 – σi(si))ui(s
∗
i ,σ–i)

< σi(si)ui(s
∗
i ,σ–i) + (1 – σi(si))ui(s

∗
i ,σ–i) = ui(s

∗
i ,σ–i)

= ui(σi,σ–i),
a contradiction.

Gonçalves (UCL) 10. Strategic Interaction 35



Best Response

If σi is BR to σ–i, then so are any si ∈ supp(σi).

Lemma

If σi : ui(σi,σ–i) ≥ ui(σ′
i ,σ–i)∀σ

′
i ̸= σi, then ∀si ∈ supp(σi), ui(si,σ–i) = ui(σi,σ–i).

Proof

Note that, as ui(σi,σ–i) = Esi∼σiui(si,σ–i), then ui(σi,σ–i) is in the convex hull of {ui(si,σ–i), si ∈
supp(σi)}.

As ui(σi,σ–i) ≥ ui(si,σ–i)∀si ∈ supp(σi), then it must be an extreme point of the convex
hull (an interval), and so ui(σi,σ–i) = maxsi∈supp(σi) ui(si,σ–i).

Let s∗i ∈ argmaxsi∈supp(σi) ui(si,σ–i) and si ∈ supp(σi) but ui(si,σi) < ui(σi,σ–i). Then,

ui(σi,σ–i) ≤ σi(si)ui(si,σ–i) + (1 – σi(si))ui(s
∗
i ,σ–i)

< σi(si)ui(s
∗
i ,σ–i) + (1 – σi(si))ui(s

∗
i ,σ–i) = ui(s

∗
i ,σ–i)

= ui(σi,σ–i),
a contradiction.

Gonçalves (UCL) 10. Strategic Interaction 35



Best Response

If σi is BR to σ–i, then so are any si ∈ supp(σi).

Lemma

If σi : ui(σi,σ–i) ≥ ui(σ′
i ,σ–i)∀σ

′
i ̸= σi, then ∀si ∈ supp(σi), ui(si,σ–i) = ui(σi,σ–i).

Proof

Note that, as ui(σi,σ–i) = Esi∼σiui(si,σ–i), then ui(σi,σ–i) is in the convex hull of {ui(si,σ–i), si ∈
supp(σi)}.

As ui(σi,σ–i) ≥ ui(si,σ–i)∀si ∈ supp(σi), then it must be an extreme point of the convex
hull (an interval), and so ui(σi,σ–i) = maxsi∈supp(σi) ui(si,σ–i).

Let s∗i ∈ argmaxsi∈supp(σi) ui(si,σ–i) and si ∈ supp(σi) but ui(si,σi) < ui(σi,σ–i). Then,

ui(σi,σ–i) ≤ σi(si)ui(si,σ–i) + (1 – σi(si))ui(s
∗
i ,σ–i)

< σi(si)ui(s
∗
i ,σ–i) + (1 – σi(si))ui(s

∗
i ,σ–i) = ui(s

∗
i ,σ–i)

= ui(σi,σ–i),
a contradiction.

Gonçalves (UCL) 10. Strategic Interaction 35



Best Response

If σi is BR to σ–i, then so are any si ∈ supp(σi).

Lemma

If σi : ui(σi,σ–i) ≥ ui(σ′
i ,σ–i)∀σ

′
i ̸= σi, then ∀si ∈ supp(σi), ui(si,σ–i) = ui(σi,σ–i).

Proof

Note that, as ui(σi,σ–i) = Esi∼σiui(si,σ–i), then ui(σi,σ–i) is in the convex hull of {ui(si,σ–i), si ∈
supp(σi)}.

As ui(σi,σ–i) ≥ ui(si,σ–i)∀si ∈ supp(σi), then it must be an extreme point of the convex
hull (an interval), and so ui(σi,σ–i) = maxsi∈supp(σi) ui(si,σ–i).

Let s∗i ∈ argmaxsi∈supp(σi) ui(si,σ–i) and si ∈ supp(σi) but ui(si,σi) < ui(σi,σ–i). Then,

ui(σi,σ–i) ≤ σi(si)ui(si,σ–i) + (1 – σi(si))ui(s
∗
i ,σ–i)

< σi(si)ui(s
∗
i ,σ–i) + (1 – σi(si))ui(s

∗
i ,σ–i) = ui(s

∗
i ,σ–i)

= ui(σi,σ–i),
a contradiction.

Gonçalves (UCL) 10. Strategic Interaction 35



Best Response

Proposition

(i) A strictly dominated strategy is never a best response.

(ii) In finite 2-player games, a pure strategy is never a best-response if and only if it
is strictly dominated.

(i) is immediate. (ii) is an application of separating hyperplane theorem.

Will show you another way of proving (ii).

Proof Sketch for (ii)

Suppose σ
∗
i is not strictly dominated. Define f : Σi ⇒ Σj s.t. f(σi) := {σj|ui(σ∗

i ,σj) ≥
ui(σi,σj)}. Let bi(σj) : argmaxσi∈Σi

ui(σi,σj). Define g : Σ ⇒ Σ s.t. g(σi,σj) = bi(σj)× f(σi).
(1) Prove that g is nonempty-valued, convex-valued, compact-valued, and UHC.
(2) Argue that ∃σ ∈ Σ : σ ∈ g(σ).
(3) Argue that σ

∗
i is not a never best response.

(4) Conclude that in finite 2-player games, a pure strategy is never a best-response if and
only if it is strictly dominated.
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Best Response

Proposition

(i) A strictly dominated strategy is never a best response.

(ii) In finite 2-player games, a pure strategy is never a best-response if and only if it
is strictly dominated.

Proof for (ii)

That strictly dominated implies NBR is immediate.

Consider then a strategy that is not
strictly dominated, σ

∗
i . WTS it implies that it is a BR to some σ

∗
j .

(a) Define f : Σi ⇒ Σj s.t. f(σi) := {σj|ui(σ∗
i ,σj) ≥ ui(σi,σj)}.

• f(σi) nonempty ∵ σ
∗
i not strictly dominated (by σi).

• f(σi) convex ∵ ui(σi, ·) linear and Σj convex.

• f(σi) closed ∵ ui(σi, ·) continuous and f defined by weak inequality.

• f(σi) compact ∵ f(σi) closed and ⊆ Σj compact.

• f UHC: ∀(σn
i ,σ

n
j )n : (σn

i ,σ
n
j ) → (σi,σj) and σ

n
j ∈ f(σn

i ), 0 ≤ limn→∞ ui(σ∗
i ,σ

n
j ) –

ui(σn
i ,σ

n
j ) = ui(σ∗

i ,σj) – ui(σi,σj) ∵ continuity ui.
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Best Response

Proposition

(i) A strictly dominated strategy is never a best response.

(ii) In finite 2-player games, a pure strategy is never a best-response if and only if it
is strictly dominated.

Proof for (ii)

That strictly dominated implies NBR is immediate. Consider then a strategy that is not
strictly dominated, σ

∗
i . WTS it implies that it is a BR to some σ

∗
j .

(a) Define f : Σi ⇒ Σj s.t. f(σi) := {σj|ui(σ∗
i ,σj) ≥ ui(σi,σj)}.

(b) Let bi(σj) : argmaxσi∈Σi
ui(σi,σj).

• As ui is continuous and linear in σi, and Σi compact, bi is nonempty-valued,
compact-valued, convex-valued, and UHC (by Berge’s theorem of the max-
imum).
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Best Response

Proposition

(i) A strictly dominated strategy is never a best response.

(ii) In finite 2-player games, a pure strategy is never a best-response if and only if it
is strictly dominated.

Proof for (ii)

That strictly dominated implies NBR is immediate. Consider then a strategy that is not
strictly dominated, σ

∗
i . WTS it implies that it is a BR to some σ

∗
j .

(a) Define f : Σi ⇒ Σj s.t. f(σi) := {σj|ui(σ∗
i ,σj) ≥ ui(σi,σj)}.

(b) Let bi(σj) : argmaxσi∈Σi
ui(σi,σj).

(c) Define g : Σ ⇒ Σ s.t. g(σi,σj) = bi(σj)× f(σi).
• f , bi nonempty-valued, convex-valued, compact-valued, and UHC =⇒ g too.

(Prove it!)
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Best Response

Proposition

(i) A strictly dominated strategy is never a best response.

(ii) In finite 2-player games, a pure strategy is never a best-response if and only if it
is strictly dominated.

Proof for (ii)

That strictly dominated implies NBR is immediate. Consider then a strategy that is not
strictly dominated, σ

∗
i . WTS it implies that it is a BR to some σ

∗
j .

(a) Define f : Σi ⇒ Σj s.t. f(σi) := {σj|ui(σ∗
i ,σj) ≥ ui(σi,σj)}.

(b) Let bi(σj) : argmaxσi∈Σi
ui(σi,σj).

(c) Define g : Σ ⇒ Σ s.t. g(σi,σj) = bi(σj)× f(σi).

(d) By Kakutani’s FPThm, ∃σ ∈ Σ : (σi,σj) ∈ g(σ) =⇒ σi ∈ bi(σj) and σj ∈ f(σi).
• σi ∈ bi(σj) =⇒ ui(σi,σj) ≥ ui(σ′

i ,σj) ∀σ
′
i ∈ Σi.

• σj ∈ f(σi) =⇒ ui(σ∗
i ,σj) ≥ ui(σi,σj).
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Best Response

Proposition

(i) A strictly dominated strategy is never a best response.

(ii) In finite 2-player games, a pure strategy is never a best-response if and only if it
is strictly dominated.

Proof for (ii)

That strictly dominated implies NBR is immediate. Consider then a strategy that is not
strictly dominated, σ

∗
i . WTS it implies that it is a BR to some σ

∗
j .

(a) Define f : Σi ⇒ Σj s.t. f(σi) := {σj|ui(σ∗
i ,σj) ≥ ui(σi,σj)}.

(b) Let bi(σj) : argmaxσi∈Σi
ui(σi,σj).

(c) Define g : Σ ⇒ Σ s.t. g(σi,σj) = bi(σj)× f(σi).

(d) By Kakutani’s FPThm, ∃σ ∈ Σ : (σi,σj) ∈ g(σ) =⇒ σi ∈ bi(σj) and σj ∈ f(σi).

(e) Conclude σ
∗
i BR to σj.

• ∵ ui(σ∗
i ,σj) ≥ ui(σi,σj) ≥ ui(σ′

i ,σj) ∀σ
′
i ∈ Σi.
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Rationalisatibility

Definition (Bernheim, 1984 Ecta; Pearce, 1984 Ecta)

Given ⟨I,S, u⟩, let Σ
0
j := Σj for all j.

(i) σi ∈ Σi is k-rationalisable for player i if it is a best response to some σ–i ∈
×j̸=ico

(
Σ
k–1
j

)
, where Σ

k–1
j the set of (k – 1)–rationalisable strategies for player

j.

(ii) σi ∈ Σi is rationalisable for player i if it is k-rationalisable for all k ≥ 1.

Rationalisability as iterated elimination of NBRs.

Why convex hull? Two pure strategies may be BR to some opponents’ strategy profile,
but mixture between them may not and player may be unsure of which of the
surviving strategies to use.
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Rationalisatibility

Lemma

σi rationalisable only if σi survives IESDS.

Why? If strictly dominated, then NBR.

Conclude: set of rationalisable strategies is a subset of set of strategies surviving
IESDS.

Lemma

For any finite game, the set of rationalisable strategy profiles is nonempty.

Proof later.

Lemma

Any pure strategy in the support of a rationalisable mixed strategy is rationalisable.

Why?

Recall that, if σi is BR to σ–i, then so are any si ∈ supp(σi).

Gonçalves (UCL) 10. Strategic Interaction 43



Rationalisatibility

Lemma

σi rationalisable only if σi survives IESDS.

Why?

If strictly dominated, then NBR.

Conclude: set of rationalisable strategies is a subset of set of strategies surviving
IESDS.

Lemma

For any finite game, the set of rationalisable strategy profiles is nonempty.

Proof later.

Lemma

Any pure strategy in the support of a rationalisable mixed strategy is rationalisable.

Why?

Recall that, if σi is BR to σ–i, then so are any si ∈ supp(σi).

Gonçalves (UCL) 10. Strategic Interaction 43



Rationalisatibility

Lemma

σi rationalisable only if σi survives IESDS.

Why? If strictly dominated, then NBR.

Conclude: set of rationalisable strategies is a subset of set of strategies surviving
IESDS.

Lemma

For any finite game, the set of rationalisable strategy profiles is nonempty.

Proof later.

Lemma

Any pure strategy in the support of a rationalisable mixed strategy is rationalisable.

Why?

Recall that, if σi is BR to σ–i, then so are any si ∈ supp(σi).

Gonçalves (UCL) 10. Strategic Interaction 43



Rationalisatibility

Lemma

σi rationalisable only if σi survives IESDS.

Why? If strictly dominated, then NBR.

Conclude: set of rationalisable strategies is a subset of set of strategies surviving
IESDS.

Lemma

For any finite game, the set of rationalisable strategy profiles is nonempty.

Proof later.

Lemma

Any pure strategy in the support of a rationalisable mixed strategy is rationalisable.

Why?

Recall that, if σi is BR to σ–i, then so are any si ∈ supp(σi).

Gonçalves (UCL) 10. Strategic Interaction 43



Rationalisatibility

Lemma

σi rationalisable only if σi survives IESDS.

Why? If strictly dominated, then NBR.

Conclude: set of rationalisable strategies is a subset of set of strategies surviving
IESDS.

Lemma

For any finite game, the set of rationalisable strategy profiles is nonempty.

Proof later.

Lemma

Any pure strategy in the support of a rationalisable mixed strategy is rationalisable.

Why?

Recall that, if σi is BR to σ–i, then so are any si ∈ supp(σi).

Gonçalves (UCL) 10. Strategic Interaction 43



Rationalisatibility

Lemma

σi rationalisable only if σi survives IESDS.

Why? If strictly dominated, then NBR.

Conclude: set of rationalisable strategies is a subset of set of strategies surviving
IESDS.

Lemma

For any finite game, the set of rationalisable strategy profiles is nonempty.

Proof later.

Lemma

Any pure strategy in the support of a rationalisable mixed strategy is rationalisable.

Why?

Recall that, if σi is BR to σ–i, then so are any si ∈ supp(σi).

Gonçalves (UCL) 10. Strategic Interaction 43



Rationalisatibility

Lemma

σi rationalisable only if σi survives IESDS.

Why? If strictly dominated, then NBR.

Conclude: set of rationalisable strategies is a subset of set of strategies surviving
IESDS.

Lemma

For any finite game, the set of rationalisable strategy profiles is nonempty.

Proof later.

Lemma

Any pure strategy in the support of a rationalisable mixed strategy is rationalisable.

Why?

Recall that, if σi is BR to σ–i, then so are any si ∈ supp(σi).

Gonçalves (UCL) 10. Strategic Interaction 43



Rationalisatibility

Definition (Pearce, 1984 Ecta)

Given ⟨I,S, u⟩, let Σ
0
j := Σj for all j.

(i) σi ∈ Σi is k-rationalisable with correlation for player i if it is a best response to
some σ–i ∈ ∆

(
×j̸=iΣ

C,k–1
j

)
, where Σ

C,k–1
j the set of strategies which are (k –

1)–rationalisable with correlation for player j.

(ii) σi ∈ Σi is rationalisable with correlation for player i if it is k-rationalisable with
correlation for all k ≥ 1.

If rationalisable without correlation, then rationalisable with correlation?

Is the converse also true?
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Rationalisatibility

Proposition 1 (Pearce 1984 Ecta)

Any pure strategy in the support of a mixed strategy which is rationalisable with corre-
lation is rationalisation with correlation.

Again, recall that, if σi is BR to σ–i, then so are any si ∈ supp(σi).

Lemma 3 (Pearce 1984 Ecta)

A strategy is 1-rationalisable with correlation if and only if it is not strictly dominated.
Furthermore, the set of strategy profiles which are rationalisable with correlation cor-
responds to the set of strategy profiles surviving IESDS.

Why?

Proof Intuition

Recall that in finite 2-player games, a pure strategy is never a best-response if and only
if it is strictly dominated.
For each player i and k, take –i as player who is choosing in ∆(SC,k–1

–i ).
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Rationalisability

Proposition

∃σ–i ∈ int(∆(A–i)) s.t. S′ ⊆ argmaxsi∈Si
ui(si,σ–i) if and only if ∄σi,σ′

i ∈ ∆(Ai) :
supp(σ′

i ) ⊆ S′ and σi weakly dominates σi.

Corollary

σi is not weakly dominated if and only if it is a best response to some σ–i ∈ ∆(A–i).

Problem set question.
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Second-Price Auction

I bidders with valuations 0 ≤ vi and vi ≤ vi+1. Bids si ≥ 0.

2PA: Highest bid wins and pays 2nd highest bid.

Payoffs:
ui(si, s–i) = vi – maxj̸=i sj if si > maxj̸=i sj.
ui(si, s–i) = 1

|j:sj=si | (vi – si) if si = maxj̸=i sj.

ui(si, s–i) = 0 if si < maxj̸=i sj.

Claim: Every strategy is rationalisable.
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A Game

In a piece of paper, please write any number in [0, 100].

You have 2 minutes to think about it.

You win if you get the closest to 2/3 of the class average.

You should not disclose any information to your colleages.
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Overview

1. Strategic Interaction

2. Normal-Form Games

3. Strict Dominance

4. Iterated Elimination of Strictly Dominated Strategies (IESDS)

5. Weak Dominance

6. Rationalisability

7. Level-k

8. More



Level-k

WT incorporate reasoning mistakes.

Level-k
Stahl (1993 GEB), Stahl and Wilson (1995 GEB), Nagel (1995 AER)
Consider dominance-solvable game.
Fix σ

0
i ∈ ∆(Si).

A level-k player chooses a best response to k – 1 level players:
ski = argmaxsi∈Si ui(si, s

k–1
–i ).
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Level-k
 BOSCH-DOM:NECH ET AL.: BEAUTY-CONTEST EXPERIMENTS

 percent of all entrants) was 14.4, while the
 average of those without comments was 26.8. In
 FT all entrants were supposed to submit com-
 ments and their average was 18.9. However, the
 average choice of those in E with comments
 (4.5 percent of all entrants) was 25.2, whereas
 without comments it was 25.5.

 Similarly, providing examples in the instruc-
 tions may affect decisions. In FT, Thaler used
 an example (with number 20 as a winner) in
 order to prevent choices above 50. Indeed, in
 FT, numbers above 50 were less frequent than
 in the other two publications: 4 percent in FT, 9
 percent in E, and 10 percent in S.

 E requested that the opening article include a
 reasoned justification for performing the exper-
 iment. This newspaper did also several pre-
 announcements of the game, days before the
 opening article appeared. This probably caused
 a higher number of participants than in the other
 Newspaper experiments. Furthermore, without
 the authors' knowledge, E published a short-
 ened version of the opening article containing
 the rules of the game on the three consecutive
 days following its publication. The shortening
 resulted in the omission that comments were

 welcome and, consequently, we received fewer
 comments from E than from the other news-

 papers. It also omitted mentioning that only one
 number per person would be accepted. In fact,
 several participants submitted multiple num-
 bers. However, they only amounted to about 1
 percent of the entries.

 (a)
 Financial Times experiment (1,468 subjects)
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 (b)
 Spektrum experiment (2,729 subjects)
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 (c)
 Expansi6n experiment (3,696 subjects)
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 FIGURE 1. RELATIVE FREQUENCIES OF CHOICES
 IN THREE NEWSPAPER EXPERIMENTS

 100

 B. Results

 Choices.-Here we analyze and compare the
 data sets of choices from the three Newspaper
 experiments. Subsquently we make use of the
 large number of comments received for these
 experiments.

 Figures l(a)-(c) show the relative frequen-
 cies of the chosen numbers [in intervals [0, 0.5);
 [0.5, 1.5); [1.5, 2.5); etc.], the average choice,
 the winning number, and the number of partic-
 ipants in the three Newspaper experiments. The
 figures indicate the similarity of choices despite
 the differences in subject pools and notwith-
 standing the uncontrollability of such experi-
 ments. In addition, the results confirm the
 existence of a common pattern of decision-
 making, previously identified in the lab experi-
 ments of the Beauty-contest game as levels of

 iterated best reply (IBRd, see Section I). We
 report these findings as:

 Fact 1: The three Newspaper experiments re-
 sult in similar frequency distributions. In partic-
 ular, they all show spikes at number choices
 33.33, 22.22, and 0.14

 In line with previous work, we take spikes
 33.33 and 22.22 as an indication that a number

 of participants follow Level 1 and Level 2 based

 14 The spike at 33.5 in Figure 1 results from the choice in
 E being constrained to the interval [1, 100], so that 2/3 of the
 average is 33.66. The rounding up of this and other numbers
 from 33.5 to 34 in the figure yields 33.5. The interval
 constraint in E and the restriction to integers in FT also
 causes the spike at 1.
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Bosch-Domènech, Montalvo, Nagel, &
Satorra (2002 AER). Guess 2/3 of
Average.

Peaks around 33 = BR(50), 22 = BR(33),
and the dominance solution 0.
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Level-k
 THE AMERICAN ECONOMIC REVIEW

 1. Lab experiments (1-5) 2. Classroom experiments (6,7)
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 3. Take-home experiments (8,9) 4. Theorists experiments (10-13)
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 5. Internet Newsgroup experiment 6. Newspaper experiments (15-17)
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 FIGURE 3. RELATIVE FREQUENCIES OF CHOICES IN THE SIX GROUPS OF EXPERIMENTS

 large. They are aware, however, of some
 of their basic sociodemographic character-
 istics (age, sex, training ...). In a news-
 paper experiment, we obtain a larger, but
 also uncertain, range of sociodemographic
 profiles.

 (b) Information seeking: Subjects of newspaper
 experiments may go to great lengths to
 submit informed answers. One interesting
 variety of observed information-seeking
 behavior consists in running a parallel
 experiment. Thirty-nine participants in S,
 and one in E, reported that they had run
 an experiment among students, friends,
 and relatives, to help them decide what
 number to submit. Of those, 31 percent
 chose a number between 12 and 17 [see
 also Figure 2(c)], the smallest integer in-

 terval containing all 2/3 of the averages in the
 three Newspaper experiments.22 By contrast,
 among the entire population of all Newspaper
 experiments, only 11 percent chose in this
 interval (see Figure 3.6).

 In one case, a participant in the S experiment
 decided to run his own replication of the exper-
 iment on an Internet newsgroup, with responses
 sent via e-mail (for the distribution of choices,
 see Figure 3.5). The winning number in his

 22 A group of German experimental physicists reported
 (see Selten and Nagel, 1998, p. 17): "We conclude that we
 do not have any reasonable reference point. Therefore we
 decide to indulge the Deities of Empiricism by running the
 game quickly among 50 friends." Their choice was
 15.768361, very close to the winning number.
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Level-k

WT incorporate reasoning mistakes.

Level-k
Stahl (1993 GEB), Stahl and Wilson (1995 GEB), Nagel (1995 AER)
Consider dominance-solvable game.
Fix σ

0
i ∈ ∆(Si).

A level-k player chooses a best response to k – 1 level players:
ski = argmaxsi∈Si ui(si, s

k–1
–i ).

Cognitive Hierarchies
Camerer, Ho, & Chong (2004 QJE)
Distribution P ∈ ∆(N0) s.t., level-k best-responds to distribution of levels ℓ < k given
by P(ℓ|ℓ < k).

P exogenous; data fitting device.

Endogenous Depth of Reasoning
Alaoui & Penta (2016 RES)
Endogenous level-k, resulting from cost-benefit analysis of ‘reasoning further’.
Level-0 exogenous; non-equilibrium.
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Level-k

WT incorporate reasoning mistakes.

Level-k

Cognitive Hierarchies

Endogenous Depth of Reasoning

Issues
(1) as if people have very unrealistic beliefs.
(2) not well defined for arbitrary games.
(3) “level” unstable even across dominance-solvable games.
(4) individual’s reasoning seems to depend on payoffs: take “more steps” of IESDS the

higher the stakes.
(5) individual’s reasoning seems to react to relative incentives smoothly.

Possible ways forward: more later
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Overview

1. Strategic Interaction

2. Normal-Form Games

3. Strict Dominance

4. Iterated Elimination of Strictly Dominated Strategies (IESDS)

5. Weak Dominance

6. Rationalisability

7. Level-k

8. More



More

- Miscellanea:
Rationalisability with preferences over lotteries: Weinstein (2016 Ecta)
Potential games (a very useful class of games): Monderer & Shapley (1996 GEB)
p-Best response: Tercieux (2006 JET)
Chess is Dominance-solvable in 2 steps (!) (Ewerhart, 2000 GEB)

- Applications of Level-k: to macro (Farhi & Werning, 2019 AER); to mechanism design
(Kneeland, 2022 JET).

- Rationalisability in networks: Lipnowski & Sadler (2019 Ecta)
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